Beam in production: Working
with dataflow flex templates
and cloud build

By Ragy Abraham, Monita

Little bit about me...

monhnita

Live in Sydney, Australia Cofounder Monita
getmonita.io

=A Austin, 2022 2
M M

Little bit about me...

PARTNERS

freacie AKVELON Packdy /M MANNING
WOMEN WHO
M|~ =

monita A\AICamp Data Council
© «VWk

Cofounder Monita
getmonita.io

=A Austin, 2022 3
M M

What we'll cover today...

~

Our Journey with Beam Ensuring reliable pipelines Deploying Beam across

Learnings from startup Continuous Integration multiple-environments
experience Continuous Deployment

Bring it together
Deploying Word-count
App in CICD framework

AM Austin, 2022

T

S U

1. Our
Journey
with Beam

I T Austin, 2022

PE sy wm

Learnings from startup experience

Our journey with beam...

e As previously mentioned, using beam since 2020
o Initially beam solved a huge problem for us -> How do we scalability process a large number of
request in real-time whilst ensuring accuracy and completeness
o At firstit was hacky!
m Mainly concerned with getting it working
e Lots of manual steps to deploy
e Testing was only done locally — no automation
o As we matured and our clients’ became bigger (more enterprisee) hacky no longer cut the
mustard
o We need to develop processes to ensure updates to our pipelines were delivered, to the
correct env, promptly (in an automated fashion) and with limited bugs (bugs are an inevitable
reality, but we want to do our best to reduce them)

=A Austin, 2022 6
M M

We started digging...

o So we started looking into Dataflow Flex Templates and

TestPipeline framework

o We had been using Google Cloud Build as our CICD framework for sometime
= For our web app and backend applications
o However, due to beam’s unique programming paradigm, it wasn't a trivial task
to get CICD running for our beam pipelines
= We went through a considerable amount of pain to get this up so we
thought we'd save you all the headache and share our learnings with you

=A Austin, 2022 7
M M

Python SDK!

Austin, 2022

2. Ensuring =%
reliable
pipelines

Continuous Integration

8, 3=A

0% U™ I T Austin, 2022

~O

Beam
TestPipelines

Beam provides a comprehensive
testing framework as part of their
SDK

10

Apache Beam Testing Framework

apache beam.
apache beam.
apache beam.
apache beam.
apache beam.

apache beam.

apache beam.

io.gcp.tests.pubsub matcher import PubSubMessageMatcher
runners.runner import PipelineState

testing import test utils

testing.pipeline verifiers import PipelineStateMatcher
testing.test pipeline import TestPipeline

testing.util import assert that

testing.util import equal to

Austin, 2022

What is TestPipeline

e You can test the individual functions used in your pipeline.
o User defined DoFns
e You can test an entire as a unit
o Combination of several DoFns
e You can perform an end-to-end test for an entire pipeline.
o The entire pipeline including 1/0
m For batch processing this is straightforward
m For streaming, as with everything streaming, it's a bit more complicated

=A Austin, 2022 12
M M

https://beam.apache.org/documentation/programming-guide/#composite-transforms

Code Deep Dive - Testing

13

Unit Testing - Basic

1 author (You)

ass CountTest(unittest.TestCase):

def test_count(self):

“there", "hi", "hi", "sue", "bob",
Hhit, Msye, "M, "N, “ZQW", “bob", "V

with TestPipeline() as p:
input = p | beam.Create(WORDS)

output = input | beam.cont t.PerElement()

assert_that(
output,
equal_to([
Shitt, 4},
"there"”, 1),
“sue”, 2),

TERMINAL DEBUG CONSOLE GITLENS: VISUAL FILE HISTORY JUPYTER: VARIABLES

apache-beam-cicd/src on } DEPLOY via & v3.9.12 (env) on & ragy:
> pytest tests/test_basic.py --disable-warnings

platform darwin -- Python 3.9.12, pytest-7.1.2, pluggy-1.0.0
rootdir: /Users/14385898/Documents/RNA/Code/apache-beam-cicd/src
plugins: anyio-3.6.1

collected 1 item

tests/test_basic.py .

Austin, 2022

COMMENTS

a.digital took 5s

test session starts

1 passed, 20 warnings in 2.05s

.ptransform_fn
Ef CountWords(pcoll):
return (

pcoll
| 'ExtractWords' >> beam.FlatMap(lambda x: re.findall(r'[A-Za-z\']+"', X))

| beam.combiners.Count.PerElement()

3 hours ago | 1 author (You)

class WordCountTest(unittest.TestCase):

def test_count_words(self):

WORDS = [
“hi", “there", "hi", "hi", "sue", "bob",
"hi", "sue", "M, ", “ZOW", “bob", ""

EXPECTED_COUNTS = [

(*hi', 4), ('there', 1)
('sue', 2), ('bob', 2), (‘zow', 1)] TERMINAL DEBUG CONSOLE GITLENS: VISUAL FILE HISTORY JUPYTER: VARIABLES COMMENTS

with TestPipeline() as p:
apache-beam-cicd/src on ¥ DEPLOY via & v3.9.12 (env) on & ragy@rna.digital

input = p | beam.Create(WORDS)
output = input | CountWords() > pytest tests/test_composite_transform.py --disable-warnings
test session starts ===

assert_that(output, equal_to(EXPECTED_COUNTS), label='CheckOutput"')

platform darwin -- Python 3.9.12, pytest-7.1.2, pluggy-1.0.0
rootdir: /Users/14385898/Documents/RNA/Code/apache-beam-cicd/src
plugins: anyio-3.6.1
collected 1 item
if __name__ == '__main__"': tests/test_composite_transform.py
logging.getLogger().setLevel(logging.INFO)
unittest.main() 1 passed, 20 warnings in 1.98s =

3=AM Austin, 2022 15

SUMMIT

30 | 1 author (You)

ass WordCountTest(unittest.TestCase):

SAMPLE_TEXT = "beam summit 2022"

def create_temp_file(self, contents):

with tempfile.NamedTemporaryFile(delete=False) as f:
f.write(contents.encode('utf-8'))

return f.name

test_basics(self):

import wordcount

temp_path = self.create_temp_file(self.SA E_TEXT)

expected_words = collections.defaultdict(int)

for word in re.findall(r'[\w]+', self.SAMPLE_TEXT):
expected_words [word] += 1

wordcount. run(

[

'——input=%sx' % temp_path,
'——output=%s.result' % temp_path

TERMINAL DEBUG CONSOLE GITLENS: VISUAL FILE HISTORY JUPYTER: VARIABLES COMMENTS

print("==runs after pipeline==")

apache-beam-cicd/src/tests on ¥ DEPLOY [!] via & v3.9.12 (env) on & ragy@rna.digital
results = [] > pytest test_wordcount_it.py --disable-warnings

with open_shards(temp_path + '.result-x') as result_file:
for line in result_file:
match = re.search(r'(\S+),([0-9]+)', line)
if match is not None:
results.append((match.group(1), int(match.group(2))))
elif line.strip():
self.assertEqual(line.strip(), 'word,count')
self.assertEqual(sorted(results), sorted(expected_words.items

test session starts ==
platform darwin -- Python 3.9.12, pytest-7.1.2, pluggy-1.0.0

rootdir: /Users/14385898/Documents/RNA/Code/apache-beam-cicd/src

plugins: anyio-3.6.1

collected 1 item

) test_wordcount_it.py

1 passed, 20 warnings in 2.48s ==

= AM Austin, 2022 16

Dataflow
Flex
Templates

Flex templates are a way to
package and execute custom
pipelines in Dataflow

MMMMMM

17

USUAL WORKFLOW é
>

=

\4

Push

Developers Google Cloud Dataflow
Commit Code Custom Template

X No Automation via CICD
X Only local testing

X Must have access to code base

X Local environment must be set up with Dataflow dependencies

What is a flex-template...

e Atemplate is a convenient way to package and distribute beam pipelines
e A flextemplate is a user-defined template based on user custom code
o This code is then templated and staged in GCS ready to be launched
e Templating has 2 phases:
1. Construction:
a. Implementing the pipeline and compiling it into execution graph and staging it in GCS
2. Execution:

a. Executing the pipeline: this is the only step you would need to do in the GC to get a template
up and running
i. Note: running the pipeline does not require recompilation of code
ii. Can be donein a number of ways
1. Google Cloud console, Google Cloud CLI, REST API or Cloud Build commands

=A Austin, 2022 19
M M

Why flex-template are important...

e You can run your pipelines without the development environment and
associated dependencies

e Templates separate the pipeline construction (performed by developers) from
the running of the pipeline. Hence, there's no need to recompile the code every
time the pipeline is run.

e Non-technical users can run templates with the Google Cloud console, Google
Cloud CLI, or the REST API.

=A Austin, 2022 20
M M

How a flex-template works...

Package a user defined pipeline as a Docker image
Stage the image on your project’s container registry
Create spec.json file -> template specification file stored on GCS
The spec.json file can then be used to launch the pipeline on DF

W=

=A Austin, 2022 21
M M

3. Deploying
Beam across
multiple

environments e

&, 3=AM

P8 Ty M M I T Austin, 2022

Continuous Deployment
Code deep dive

22

Rules...

e We do not want to store any of this information in GIT
e We do not want to rely on static .env files
o .env files must be built dynamically and variable are specific to the environment

e We need all environment variables to made available by the environment
o That way we don't have to think about “where is this being deployed”

e Sensitive information is stored in secret manager
o E.g. database credentials

=A Austin, 2022 23
M M

CICD WORKFLOW i i
>

Users

can launch (‘) -
jobs from UL Y

! I
U 1
0 I
I
! " acs ! '
' - Template : 4
—
Trlgger Bu1ld Steps : Staging ! Dataflow
..... : spec.json [Job is
docker : : live
Cloud Repository Cloud Build I Google Container Google Cloud Dataflow ,
Dataflow Source Code YAML File , Registry Flex Template :
' Build + Store .
1 1 Docker Image :
I
Push e e - - S R
env variables credentials
used to access are returned
secrets . securely
Cloud Secret
Manager
Developers Holds Env Specific

Commit Code Credentials

Create variables
in cloud build

‘ger.io/cloud-builders/docker’
'build-docker-container*
t: 'bash’

=)
docker build -t gcr.io/$PROJECT_ID/$_TARGET_GCR_IMAGE: $BUILD_ID \
——build-arg PROJECT_ID=$PROJECT_ID \
—-build-arg IMAGE=$_TARGET_GCR_IMAGE \
—=build-arg REGIOI REGION \
—-build-arg BUCKE TEMPLATE_GCS_LOCATION . |

2. Make
variables

Variable 1* Value 1
[_PROJECT_I [
Z
Variable 2 * Value 2
{ _REGION { us-centrall }
2
~ Variable 3 * Value 3
{ _SETUP_FILE [/dataflow/template/setup.py
4
Variable 4 * Value 4
[_TARGET_GCR_IMAGE [-streaming-pipeline
Z
Variable 5 * Value 5
{ _TEMPLATE_GCS_LOCATION] |,gs:// 'dataflow/template/spec.json }
2

3.
.env file in docker

Build a dynamic

RUN echo
RUN echo

"PROJECT_ID=${PROJECT_ID}" >> .env
"IMAGE=${IMAGE}" >> .env

available
to
Dockerfile

RUN echo
RUN echo

"BUCKET=${BUCKET}" .env
"REGION=${REGION}" .env

Austin, 2022

4. Import .env in

code

from pathlib import Path

from dotenv import load_dotenv

import os

import logging

import apache_beam as beam

import json

from traceback import format_exc

from apache_beam.options.pipeline_options import PipelineOptions, StandardOptions
from modules.cloud_secrets import access_secret, CreateSecret

import google.auth

env_path = Path('.') / '
load_t nv(dotenv_path=:

REGION = 0s.9
BUCKET = os.get
s.getenv('IMAGE')
. nv("LOCAL")
Local enviornment is {LOCAL}")

00GLE_APPLICATION_CREDENTIAL!
credentials, PROJECT_ID = google.
scopes=["https://www.googleap.

./modules/keys/
ault(
om/auth/cloud-platform"]

)
runner = ‘DirectRunner’

4.Bringing
it together
(Demo)

I T Austin, 2022

Live Demo Deploying CICD framework

26

The workflow we used

Dynamic .env

project id file creation
Env specific bucket
metadata held region
in Cloud build image title @
Triggers

Cloud Build Docker Eile Pipeline

YAML File Code

env variables are used
to access secrets

Env specific

credentials held

in Secret .
Manager Credentials are

returned securely

Austin, 2022

Gotchas...

Timeout in polling result
file:

Service account:

URL:

at

Do NOT use a requirements.txt file

Do not install

Image
Troubleshooting guide

et evvmy e o

2022-02-16 14:02:24.955 AEDT Executing: python /dataflow/template/__main__.py --
setup_file=/dataflow/template/setup.py --staging_location=gs://monita-testing-bucket/temp --runner=DataflowRunner

--project=tag-monitoring-dev ff]ob_nay'n‘e:adobefstreamlngfplpehne --template_location=gs://monita-testing-
bucket/temp/template_launches/2022-02-15_19_00_10-10508789548085917659/job_object --region=us-centrall --
service_account_email=dataflow-service-account@tag-monitoring-dev.iam.gserviceaccount.com --
temp_location=gs://monita-testing-bucket/temp

2022-02-16 14:02

beam in setup.py
file

2022-02-16

14

102:

125

25

.338

AEDT

.338 AEDT Traceback (most recent call last):

File "/dataflow/template/__main__.py", line 5, in <module>

2022-02-16

2022-02-16

14

4

102

102:

125

25

.338

.338

AEDT

AEDT

import apache_beam as beam

ModuleNotFoundError: No module named 'apache_beam'

2022-02-16

2022-02-16

[3 2022-02-16

Austin, 2022

102

125

.344

.344

344

AEDT

AEDT

AFDT

python failed with exit status 1
Template launch failed: exit status 1

Unloadina console Toas to acs loecation: as://monita-testina-hucket/temn/temnlate 1 2

mailto:dataflow-service-account@tag-monitoring-dev.iam.gserviceaccount.com
http://gcr.io/tag-monitoring-dev/adobe-streaming-pipeline:e8354c20-3bd0-49fd-9c85-b1d8c6dfe78e
https://cloud.google.com/dataflow/docs/guides/common-errors#timeout-polling

Gotchas... ==

FROM gcr.io/dataflow-templates-base/python3-template-launcher-base

LABEL version="0.1"
LABEL author="Ragy"

ARG WORKDIR=/dataflow/template

RUN mkdir -p ${WORKDIR}

RUN mkdir -p ${WORKDIR}/modules
WORKDIR ${WORKDIR}

COPY app/modules ${WORKDIR}/modules

RUN pip install —-upgrade pip \
&& pip install --upgrade setuptools \ Beam mUSt be
&& pip install --upgrade python-dotenyf\

&& pip install apache-beam[gcp] \ insta”ed in the
&& pip install google-cloud-secret-maniger==2.0.0
Dockerfile

COPY app/__init__.py ${WORKDIR}/__i .py

COPY app/setup.py ${WORKDIR}/setup.py

COPY app/__main__.py ${WORKDIR}/__main__.py

COPY app/spec/metadata.json ${WORKDIR}/metadata.json

ENV FLEX_TEMPLATE_PYTHON_SETUP_FILE="${WORKDIR}/setup.py"
FLEX_TEMPLATE_PYTHON_PY_FILE="${WORKDIR}/_ main__.py"

PROJECT_ID
IMAGE
BUCKET
REGION

echo "PROJECT_ID=${PROJECT_ID}" >> .env
echo "IMAGE=${IMAGE}" >> .env

echo "BUCKET=${BUCKET}" >> .env

echo "REGION=${REGION}" >> .env

Austin, 2022

Questions?

I T Austin, 2022

ragy@getmonita.io
Linkedin
/ragyibrahim/apache-beam-cicd

30

