
Austin, 2022

Beam in production: Working
with dataflow flex templates
and cloud build
By Ragy Abraham, Monita

Austin, 2022

Little bit about me…

2

Live in Sydney, Australia Cofounder Monita
getmonita.io

Austin, 2022

Little bit about me…

3

Live in Sydney, Australia Cofounder Monita
getmonita.io

Austin, 2022

What we’ll cover today…

4

Our Journey with Beam
Learnings from startup

experience

Ensuring reliable pipelines
Continuous Integration

Deploying Beam across
multiple-environments

Continuous Deployment

Bring it together
Deploying Word-count
App in CICD framework

1 3

4

2

Austin, 2022

1. Our
Journey
with Beam

5

Learnings from startup experience

Austin, 2022 6

Our journey with beam…
● As previously mentioned, using beam since 2020

○ Initially beam solved a huge problem for us -> How do we scalability process a large number of
request in real-time whilst ensuring accuracy and completeness

○ At first it was hacky!
■ Mainly concerned with getting it working

● Lots of manual steps to deploy
● Testing was only done locally – no automation

○ As we matured and our clients’ became bigger (more enterprisee) hacky no longer cut the
mustard

○ We need to develop processes to ensure updates to our pipelines were delivered, to the
correct env, promptly (in an automated fashion) and with limited bugs (bugs are an inevitable
reality, but we want to do our best to reduce them)

Austin, 2022

We started digging…

7

● So we started looking into Dataflow Flex Templates and
TestPipeline framework

○ We had been using Google Cloud Build as our CICD framework for sometime
■ For our web app and backend applications

○ However, due to beam’s unique programming paradigm, it wasn’t a trivial task
to get CICD running for our beam pipelines

■ We went through a considerable amount of pain to get this up so we
thought we’d save you all the headache and share our learnings with you

Austin, 2022

Python SDK!

8

Austin, 2022

2. Ensuring
reliable
pipelines

9

Continuous Integration

Beam
TestPipelines Beam provides a comprehensive

testing framework as part of their
SDKWhy we need it…

10

Austin, 2022

Apache Beam Testing Framework

11

from apache_beam.io.gcp.tests.pubsub_matcher import PubSubMessageMatcher

from apache_beam.runners.runner import PipelineState

from apache_beam.testing import test_utils

from apache_beam.testing.pipeline_verifiers import PipelineStateMatcher

from apache_beam.testing.test_pipeline import TestPipeline

from apache_beam.testing.util import assert_that

from apache_beam.testing.util import equal_to

Austin, 2022

What is TestPipeline

12

● You can test the individual functions used in your pipeline.
○ User defined DoFns

● You can test an entire Transform as a unit
○ Combination of several DoFns

● You can perform an end-to-end test for an entire pipeline.
○ The entire pipeline including I/O

■ For batch processing this is straightforward
■ For streaming, as with everything streaming, it’s a bit more complicated

https://beam.apache.org/documentation/programming-guide/#composite-transforms

Austin, 2022

Code Deep Dive - Testing

13

Austin, 2022

Unit Testing - Basic

14

Austin, 2022

Unit Testing - DoFns (Composite)

15

Austin, 2022

Integration Testing - Pipelines (Batch)

16

Dataflow
Flex

Templates Flex templates are a way to
package and execute custom
pipelines in DataflowWhy we need it…

17

Austin, 2022

Down side

18

● Anyone who wants to deploy/update pipeline must:
○ Install beam locally

■ Getting beam running locally
○ Install all dependencies locally
○ If your local environment is different this will impact end result

■ You are essentially deploying your local code to a remote runner -> as is!
○ Launching pipelines is now limited to people who have access to code base

Austin, 2022

● A template is a convenient way to package and distribute beam pipelines
● A flex template is a user-defined template based on user custom code

○ This code is then templated and staged in GCS ready to be launched
● Templating has 2 phases:
1. Construction:

a. Implementing the pipeline and compiling it into execution graph and staging it in GCS
2. Execution:

a. Executing the pipeline: this is the only step you would need to do in the GC to get a template
up and running

i. Note: running the pipeline does not require recompilation of code
ii. Can be done in a number of ways

1. Google Cloud console, Google Cloud CLI, REST API or Cloud Build commands

What is a flex-template…

19

Austin, 2022

Why flex-template are important…

20

● You can run your pipelines without the development environment and
associated dependencies

● Templates separate the pipeline construction (performed by developers) from
the running of the pipeline. Hence, there's no need to recompile the code every
time the pipeline is run.

● Non-technical users can run templates with the Google Cloud console, Google
Cloud CLI, or the REST API.

Austin, 2022

How a flex-template works…

21

1. Package a user defined pipeline as a Docker image
2. Stage the image on your project’s container registry
3. Create spec.json file -> template specification file stored on GCS
4. The spec.json file can then be used to launch the pipeline on DF

Austin, 2022

3. Deploying
Beam across
multiple
environments

22

Continuous Deployment
Code deep dive

Austin, 2022

Rules…

23

● We do not want to store any of this information in GIT
● We do not want to rely on static .env files

○ .env files must be built dynamically and variable are specific to the environment
● We need all environment variables to made available by the environment

○ That way we don’t have to think about “where is this being deployed”
● Sensitive information is stored in secret manager

○ E.g. database credentials

24

Austin, 2022 25

1. Create variables
in cloud build

2. Make
variables
available
to
Dockerfile

3. Build a dynamic
.env file in docker

4. Import .env in
code

Austin, 2022

4.Bringing
it together

(Demo)

26

Live Demo Deploying CICD framework

Austin, 2022

The workflow we used

27

Env specific
metadata held
in Cloud build
Triggers

Env specific
credentials held
in Secret
Manager

Cloud Build
YAML File Docker File Pipeline

Code

project id
bucket
region
image title
...

Dynamic .env
file creation

env variables are used
to access secrets

Credentials are
returned securely

Austin, 2022

Gotchas…

28

Timeout in polling result
file: gs://monita-testing-bucket/temp/template_launches/2022-01-31_20_26_06-14138723572289947670/operation_result.
Service account: dataflow-service-account@tag-monitoring-dev.iam.gserviceaccount.com Image
URL: gcr.io/tag-monitoring-dev/adobe-streaming-pipeline:e8354c20-3bd0-49fd-9c85-b1d8c6dfe78e Troubleshooting guide
at https://cloud.google.com/dataflow/docs/guides/common-errors#timeout-polling

Do NOT use a requirements.txt file

Do not install
beam in setup.py

file

mailto:dataflow-service-account@tag-monitoring-dev.iam.gserviceaccount.com
http://gcr.io/tag-monitoring-dev/adobe-streaming-pipeline:e8354c20-3bd0-49fd-9c85-b1d8c6dfe78e
https://cloud.google.com/dataflow/docs/guides/common-errors#timeout-polling

Austin, 2022

Gotchas…

29

Beam must be
installed in the
Dockerfile

Austin, 2022

Questions?

30

ragy@getmonita.io
Linkedin

/ragyibrahim/apache-beam-cicd

