
Introduction to performance
testing in Apache Beam
Alexey Romanenko
Principal Software Engineer, Talend
Apache Beam PMC Member

Intro

Performance testing vs
Benchmarking
Performance testing is in general a testing
practice performed to determine how a
system performs in terms of responsiveness
and stability under a particular workload.

It can also serve to investigate, measure,
validate or verify other quality attributes of the
system, such as scalability, reliability and
resource usage.

Benchmark is the act of running a computer
program, a set of programs, or other
operations, in order to assess the relative
performance of an object, normally by running
a number of standard tests and trials against
it.

https://en.wikipedia.org/wiki/Software_performance_testing https://en.wikipedia.org/wiki/Benchmark_(computing)

https://en.wikipedia.org/wiki/Software_performance_testing
https://en.wikipedia.org/wiki/Benchmark_(computing)

Why do we need performance
testing in Beam?
● Measure a runner performance and detect performance degradation (if any)

○ e.g. between two Beam releases or periodically

● Test how Beam pipelines run under the load
● Compare the performance for different runners and SDK in Beam

○ Same test suite, same datasets, same environment (well, we do our best…)

● Compare the performance between Beam runners and native engines
○ Sensible topic =)

Performance testing in Beam

IO transform integration tests

IO transform integration tests

IO transform
integration tests

Core Beam
Operations tests

Nexmark suites

TPC-DS suites

IOIT

IOIT (IO Integration Tests)
● “2-in-1”: integration and performance tests (depending on input data size)
● Intended to be implemented for every IO connector

○ Some IOs are still missing

● Only batch mode
○ BoundedSource has to be used for streaming pipelines

● For now, implemented only for Java SDK
● Supported runners:

○ Any runner that supports Java SDK

● Run manually / on Jenkins
● Grafana dashboard integration

Write pipeline

IOIT: Common scenario

IO
Sink

N records IO.write()
Collect
Write

metrics

Read pipeline

IO
Source

Count
recordsIO.read() hash(input)

Collect
Read

metrics

IOIT (IO Integration Tests)
Collected metrics:

● Read time
● Write time

IOIT: Pros/Cons
Pros:

● Leverage the same code as for ITs
○ Most Java IOs already has them

● Easy to implement for new IO
● Runs against real (or k8s) data

backends

Cons:

● Only Java SDK and Batch mode
● Very few metrics
● Limited number of predefined input

records (N)

Core Beam
Operations

Core Beam Operations Load Tests
● Test performance of the core beam operations from Apache Beam model on

different runners:
○ ParDo, ParDo with SideInput, GroupByKey, CoGroupByKey, Combine

● Uses Synthetic Source and Synthetic Step
● Supports Batch and Streaming
● SDK supported:

○ Java SDK, Python SDK and Go SDK

● Runners supported:
○ Dataflow, Flink, Spark (Dataset)

● Runs on Jenkins
● Grafana dashboard integration

Synthetic Source & Step
Synthetic Source is a highly parameterizable
Source that provides deterministic data
(KV<byte[], byte[]>).

Provided options:

● Seed
● Key and value size
● Hot keys
● Delay between consequent data emissions
● Number of generated records
● … and others

Synthetic Step is a highly parameterizable DoFn
that consumes KV<byte[], byte[]> and emits
KV<byte[], byte[]>.

Provided options:

● Actions between data emissions
● Delay per bundle
● Upper throughput limit

● … and others

+ iterations
+ fanout

Core Beam Operations Load Tests
Gathered metrics:

● Run time
● Consumed bytes
● Memory usage
● Split/bundle count
● Throughput / lag (for streaming scenarios)

Example: ParDoLoadTest
PCollection<KV<byte[], byte[]>> input =

 pipeline

 .apply("Read input", readFromSource(sourceOptions)) // Synthetic Source

 .apply(ParDo.of(runtimeMonitor))

 .apply(ParDo.of(new ByteMonitor(METRICS_NAMESPACE, "totalBytes.count")));

for (int i = 0; i < options.getIterations(); i++) {

 input =

 input.apply(

 String.format("Step: %d", i),

 ParDo.of(

 new CounterOperation<>(

 options.getNumberOfCounters(), options.getNumberOfCounterOperations())));

}

input.apply(ParDo.of(runtimeMonitor));

Example: ParDoLoadTest

Nexmark

Nexmark benchmark suite
Nexmark is a suite of pipelines inspired by the
‘continuous data stream’ queries in Nexmark
research paper

These are multiple queries over a three entities
model representing on online auction system:

● Person represents a person submitting an
item for auction and/or making a bid on an
auction.

● Auction represents an item under auction.
● Bid represents a bid for an item under

auction.

Auction

Person
Seller

Person
Bidder

Person
Bidder

Bid

Ite
m

Example:
Query 4: What is the average selling
price for each auction category?

Nexmark
9 (+6) benchmark queries of a continuous processing system

● Continuous queries is a good match for the Beam Model
● Run regularly for a long time on Beam and helped find MANY issues +

regressions

but
● Not running at big scale
● Not Industry standard
● We can’t compare results with other systems (only inside Beam)

Nexmark in Beam
● Supports batch and streaming pipelines

● Implemented only for Java SDK
○ non-SQL
○ SQL

● Running on:
○ Dataflow runner
○ Spark (RDD and Dataset) runner
○ Flink runner

● Used to detect performance regression for Beam releases

Nexmark: Default configuration
Events generation

● 100 000 events generated
● 100 generator threads
● Event rate in SIN curve
● Initial event rate of 10 000
● Event rate step of 10 000
● 100 concurrent auctions
● 1000 concurrent persons bidding /

creating auctions

Windows
● size 10s
● sliding period 5s
● watermark hold for 0s

Events Proportions

● Hot Auctions = ½
● Hot Bidders =¼
● Hot Sellers=¼

Technical

● Artificial CPU load
● Artificial IO load

Nexmark: Output
Performance:

 Conf Runtime(sec) Events(/sec) Results

 0000 5,5 18138,9 100000

 0001 4,2 23657,4 92000

 0002 2,2 45683,0 351

 0003 3,9 25348,5 444

 0004 1,6 6207,3 40

 0005 5,0 20173,5 12

 0006 0,9 11376,6 401

 0007 121,4 823,5 1

 0008 2,5 40273,9 6000

 0009 0,9 10695,2 298

 0010 4,0 25025,0 1

 0011 4,4 22655,2 1919

 0012 3,5 28208,7 1919

Nexmark: Dashboards
Query1 or CURRENCY_CONVERSION:
What are the bid values in Euro’s? Illustrates a simple map.

SparkRunner (RDD) SparkRunner (Dataset)

TPC-DS

TPC-DS Benchmark
TPC-DS is a decision support benchmark that models several generally applicable
aspects of a decision support system, including queries and data maintenance.

● Industry standard benchmark (OLAP/Data Warehouse)
○ http://www.tpc.org/tpcds/

● Implemented for many analytical processing systems
○ RDBMS, Apache Spark, Apache Flink, etc

● Wide range of different queries (SQL)

● Existing tools to generate input data of different sizes

http://www.tpc.org/tpcds/

TPC-DS: Basic tables schema

TPC-DS: Input Data

Data source:

● Input files are generated with CLI tool (CSV)
● The tool constrains the minimum amount of data to be generated to 1GB.
● TPC-DS dsdgen tool for text (CSV) generation.

○ 3rd-party tools to generate input in different formats (Parquet)

 Generated datasets:

● Data size scale factors:
○ 1GB / 10GB / 100GB / 1000GB

TPC-DS: Queries

● 99 distinct SQL-99 queries (including OLAP extensions)

● Each query answers a business question, which illustrates the business
context in which the query could be used

● All queries are “templated” with random input parameters.

● Used to compare SQL implementation of completeness and performance

TPC-DS: Query example
Query3 is a good example that contains all main data processing primitives (filtering,
aggregation, sorting, selecting, etc)

Report the total extended sales price per item brand of a specific manufacturer for all sales
in a specific month of the year.

 SELECT dt.d_year, item.i_brand_id brand_id, item.i_brand brand,
 SUM(<AGGC=ss_ext_sales_price>) sum_agg
 FROM date_dim dt, store_sales, item
 WHERE dt.d_date_sk = store_sales.ss_sold_date_sk
 AND store_sales.ss_item_sk = item.i_item_sk
 AND item.i_manufact_id = <MANUFACT=128>
 AND dt.d_moy=<MONTH.01=11>
 GROUP BY dt.d_year, item.i_brand, item.i_brand_id
 ORDER BY dt.d_year, sum_agg desc, brand_id
 LIMIT 100

● It can be used to:
○ Compare the performance of Beam SQL for different runners and their different versions
○ Run Beam SQL on different environments
○ Detect missing Beam SQL features / incompatibilities
○ Find performance issues in Beam

● Data sources supported:
○ CSV and Parquet

● Runners supported:
○ Dataflow, Spark (RDD and Dataset), Flink

● 25 (of 103) queries are passing
○ Many queries are not supported by Beam SQL

TPC-DS extension in Beam

Pros:

● Industry standard benchmark
● Helped to find a bunch of Beam

issues while running on scale
○ See a talk:

“TPC-DS and Apache Beam - the time
has come!”
(Ismael Mejía/Alexey Romanenko)

https://2021.beamsummit.org/sessi
ons/tpc-ds-and-apache-beam/

TPC-DS: Pros/Cons
Cons:

● Still under development
○ Requires more attention from Beam

community
● Many SQL queries are not supported

by Beam SQL
○ Can’t run the whole benchmark

● Only batch mode is supported

https://2021.beamsummit.org/sessions/tpc-ds-and-apache-beam/
https://2021.beamsummit.org/sessions/tpc-ds-and-apache-beam/

Infra

Collect runtime metrics
● Collect metrics

○ Use Metrics API
■ TimeMonitor (Java), MetricsReader (Python)

○ Custom collector
■ Nexmark, TPC-DS

● Store metrics
○ BigQuery, InfluxDB

● Visualisation
○ PerfKit (past), Grafana

Automation: Jenkins

https://ci-beam.apache.org/

https://ci-beam.apache.org/

Dashboards: Grafana
http://metrics.beam.apache.org/

http://metrics.beam.apache.org/

Beam Metrics Report
dev@beam.apache.org

mailto:dev@beam.apache.org

Some conclusions
● Performance measuring is CRUCIAL important!
● Java SDK is pretty well covered by different performance testing suites and

benchmarks
● Python SDK, Go SDK and Cross-Language pipelines are missing the

benchmarks
● We don’t run regularly the performance tests on large datasets and at real

scale
○ It helps to find the specific issues

● Beam is in a good shape on this but…

Want to contribute?
Examples of things to do:

● Add perf tests / benchmarks for Python and Go SDKs
● Add more runners to run regularly

○ Portable runners including!

● Automate perf regressions with “git bisect”
○ Grafana alerts
○ Add to release testing routine

● Make TPC-DS in Beam more mature and part of release testing
● Add benchmarks/tests of your choice
● … etc

References

Nexmark:

● Main doc: https://datalab.cs.pdx.edu/niagara/NEXMark/
● Beam: https://beam.apache.org/documentation/sdks/java/testing/nexmark/
● Wiki: https://cwiki.apache.org/confluence/display/BEAM/Nexmark

TPC-DS:

● Website: https://www.tpc.org/tpcds/default5.asp
● Beam: https://beam.apache.org/documentation/sdks/java/testing/tpcds/

https://datalab.cs.pdx.edu//niagara/NEXMark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://cwiki.apache.org/confluence/display/BEAM/Nexmark
https://www.tpc.org/tpcds/default5.asp
https://beam.apache.org/documentation/sdks/java/testing/tpcds/

Thanks!

