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About MavenCode

twitter.com/mavencode

MavenCode is an Artificial Intelligence Solutions Company with HQ in Dallas, Texas and remote delivery 

workforce across multiple time zones. We do training, product development and consulting services with 

specializations in:

● Provisioning Scalable AI and ML Infrastructure - OnPrem and In the Cloud

● Development & Production Operationalization of ML platforms - OnPrem and In the Cloud

● Streaming Data Analytics and Edge IoT Model Deployment for Federated Learning

● Building out Data lake, Feature Store, and ML Model Management platform
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Agenda for Today
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1 Making the Case for Cloud Agnostic ML Deployments

2 Building it all on Kubernetes

3 Orchestration of Beam Job Deployments with Argo Workflows

4 Agile Team Approach to ML Workflow Deployment

5 Lessons Learned and Summary
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Overview of Machine Learning Workflow
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1. The goal of any Machine Learning application is to build a Statistical Model using curated data 
and applying Machine Learning algorithms to them.

2. The main artifacts of any Machine Learning Projects are Data, ML Model and the Code.

3. This is how a Simplified ML Workflow looks

DATA 
ACQUISITION

IoT Devices Databases
Unstructured 
FileSystems

DATA 
PREPARATION

Curated Dataset

FEATURE 
ENGINEERING

Visualization and PCA 

MODEL 
TRAINING

- Tuning
- Error Analysis
- Model Selection

    

DEPLOYMENT

- Model Packaging
- Model Monitoring
- Model Explainability

#
#
#
#
#
#
#
#
#
#
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Challenges in Building ML Workflow
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Reproducibility
● Not Easy to Reproduce ML Model Output 

on each iterative runs 
● Constantly Changing Training Data
● Consistent Environment Configuration 

Issues

Reusability
● Training Pipelines are not 

Componentized for Reusability
● No well defined way of doing Model 

versioning and tagging
● Collaboration and sharing of source 

code is not well defined

Manageability
● Managing model deployment and serving 

between environments is difficult
● Versioning and Tracking model artifacts is 

very difficult and complex
● No defined way to visually track updates 

and changes

Automation
● A lot of deployment process is still 

manual
● Steps needed to update model 

parameters are not not automated
● Most data science teams are not 

equipped with the right knowledge to 
take models to production
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Building ML Workflows in Reality could be Complex!
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● Many Data Sources - Databases, File Systems, Storage Buckets, Streaming Data.

● The Data Sources in most cases are siloed across different locations with various 
access requirements: In-House datasets, Third Party, Public datasets.

● Different Data Protection Requirements - PI data, GDPR restrictions etc

● Data Availability in some cases are time-bounded! Streaming or Batched  delivered 
Hourly, Daily, Monthly etc
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Typical ML workflow in Reality is more Complex!
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Data Exploration

 

Data Wrangling Refined Data

DELTA LAKE Feature Store

Feature 
Groups 1

Feature 
Groups 2

Feature 
Groups N

Streaming Data Source

Batched Data Source

Structured “SQL” Data Source

Ingest Data from 
various sources with 
different 
characteristics using 
Beam IO SDK

1 Write the Ingested data into Delta Lake with 
Beam IO writers

Expose data in a structure that can be queried 
for wrangling or quick exploratory analysis by 
Data Scientist or Data Engineers

2

ML Model Training / Testing and 
Tuning until the best 
performance is achieved

3
- Model Management and 
Deployment Rollout
- Post Deployment Monitoring

4

Model Management

Model Management
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Our Approach to ML Workflow Deployment
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● We have a Polyglot team. Use the best tool to solve the problem, as long as we can containerize 
it, so we have beam pipeline codes written in Go, Scala, Java and Python

● Make use of Apache Beam’s Runtime portability makes it easy for us to do local controlled 
testing of our ML pipelines

● We build our components to be reusable, Data Source, Data Writer, Feature Store Components, 
Model Training Components, and Model Serving Components

● Versioned Containerized Workflow Pipeline with Argo Workflow

● For team efficiency and consistency, we leverage Containers built on Kubernetes to gain 
portability across infrastructure
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Embracing the Apache Beam Philosophy 
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Beam Java Beam Python

Pipeline (Runner API)

Direct Runner

Beam Go

Flink  Runner Spark Runner Dataflow 
Runner

 

 

Data Engineer 
Implementing 
Production Ready 
Data Pipeline in Java

Data Scientist writing 
ML Codes with Beam 
Dataframes, and Beam 
SQL

Beam Advantage
Unified Data Pipeline (Stream + Batch)

Multi-Language Support ( with new Portable Runner for Java/Python/Go )

Multiple Runner Support ( Direct, Flink, Spark and Dataflow )

Beam ML, Beam Dataframe and TFX integration for ML workloads

Still very early stage 
for us
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With Kubernetes Added, ML Deployment is Easier
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Beam Java Beam Python

Pipeline (Runner API)

Beam Go 

 

Data Engineer 
Implementing 
Production Ready 
Data Pipeline in Java

Data Scientist writing 
ML Codes with Beam 
Dataframes, and Beam 
SQL

Beam Advantage
Unified Data Pipeline (Stream + Batch)

Multi-Language Support ( with new Portable Runner for Java/Python/Go )

Multiple Runner Support ( Direct, Flink, Spark and Dataflow )

Beam ML, Beam Dataframe and TFX integration for ML workloads

Direct Runner Flink  Runner Spark Runner

Kubernetes Advantage
Infrastructure Agnostic Setup!

Still very experimental 
not enough proven 
use-cases
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Advantages of Running Apache Beam ML 
Pipeline on Kubernetes
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● Leverage Beams Portability, Multi-Language Semantics that now allows support for Python, Java, Scala and 
Golang, In addition we can use External Transforms to make calls from Python to Java Code

● Rich beam Library and API available to handle each stage of Workflow process, TFX, Beam SQL, and 
connector IOs

● Beam Job a can be Containerized as Unit of work that can be easily maintained on its own and deployed on 
the Kubernetes Cluster

● Infrastructure Portability on Kubernetes makes it easy to share or migrate between local kubernetes 
environment and production or development environments

● Consistency between operating environment for Data Scientist, ML Engineers and what is finally deployed

● Ease of debugging and testing on Local environment before deployment



Building it All on 
Kubernetes
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Building Apache Beam ML Pipeline Stack on 
Kubernetes 
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Direct Runner Flink  Runner Spark Runner

Beam Java Beam Python

Pipeline (Runner API)

Beam Go Portability of Coding Semantics ( Java, Scala, Python, Go or SQL)1

Portability of Across Runners ( Direct Runner, Flink Runner, Spark Runner, 
Dataflow Runner)2

Portability of Across Compute Infrastructure - Local Dev, OnPrem or Cloud3
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Portability in Apache Beam
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Beam Java

Beam Python

Beam Golang

Future SDK 
Implementations

 

 

 

 ?

Spark Runner

Flink Runner

Samza  Runner

Dataflow  Runner

Other Runner 
Implementations

Beam Model Pipeline 
Construction with 
Runner API (Proto)

Beam Model 
Execution: (Fn API)

Java Execution 
Environment

Python Execution 
Environment

Golang  Execution 
Environment

Future  Execution Env 
ImplementationsThe Runner API 

provides SDK and 
Runner Independent 
definition of the Beam 
Pipeline

Fn API allows the 
Runner to invoke SDK 
specific environment
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Portability in Apache Beam
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Beam Java

Beam Python

Beam Golang

Future SDK 
Implementations

 

 

 

 ?

Spark Runner

Flink Runner

Samza  Runner

Dataflow  Runner

Other Runner 
Implementations

Beam Model Pipeline 
Construction with 
Runner API (Proto)

Beam Model 
Execution: (Fn API)

Java Execution 
Environment

Python Execution 
Environment

Golang  Execution 
Environment

Future  Execution Env 
ImplementationsThe Runner API 

provides SDK and 
Runner Independent 
definition of the Beam 
Pipeline

Fn API allows the 
Runner to invoke SDK 
specific environment
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How Apache Beam Portability Works
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import apache_beam as beam
from apache_beam.options.pipeline_options import 
PipelineOptions

options = PipelineOptions([
    "--runner=PortableRunner",
    "--job_endpoint=localhost:8099",
    "--environment_type=DOCKER"
])
with beam.Pipeline(options) as p:
    ...

 

docker run apache/beam_spark_job_server:latest 
—spark-master-url=spark://<SPARK_MASTER_URL>:7077

OR

docker run apache/beam_flink1.14_job_server:latest 
—flink-master=<FLINK_MASTER_URL>:8081

Beam Job Example Job Service Endpoint Deployment Clusters

Developer Implements 
Beam Job in Local 
Environment in this 
Case Python

1
Starts up a Job Service 
Runner that targets 
the specific ENV they 
want

2
JobService Runner 
Deploys Job to remote 
or local Spark or Flink 
Cluster

3
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How Apache Beam Portability Works
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import apache_beam as beam
from apache_beam.options.pipeline_options import 
PipelineOptions

options = PipelineOptions([
    "--runner=PortableRunner",
    "--job_endpoint=localhost:8099",
    "--environment_type=LOOPBACK"
])
with beam.Pipeline(options) as p:
    ...

 

docker run apache/beam_spark_job_server:latest 
—spark-master-url=spark://<SPARK_MASTER_URL>:7077

OR

docker run apache/beam_flink1.14_job_server:latest 
—flink-master=<FLINK_MASTER_URL>:8081

Beam Job Example Job Service Endpoint Deployment Clusters

Developer Implements 
Beam Job in Local 
Environment in this 
Case Python

1
Starts up a Job Service 
Runner that targets 
the specific ENV they 
want

2

JobService Runner 
Deploys Job to remote 
or local Spark or Flink 
Cluster

3

OR
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Beam Portability Advantages
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● Rich set of IOs already implemented In Beam Java can be invoked in Python, GO etc

● Using Expansion Service with External Transforms to call Java APIs

from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.io.kafka import ReadFromKafka

p = beam.Pipeline(options=pipeline_options)

res = (p | 'ReadFromKafka' >> ReadFromKafka(consumer_config={"bootstrap.servers": "localhost:9092"},topics=["<TOPICS>"])

from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.io.kafka import ReadFromKafka

p = beam.Pipeline(options=pipeline_options)

res = (p | 'ReadFromKafka' >> ReadFromKafka(consumer_config={"bootstrap.servers": "localhost:9092"},topics=["<TOPICS>"]

| 'ReadFromKafka' >> beam.JavaExternalTransform("org.apache.beam.sdk.io.TextIO").write().to("<STORAGE_PATH>")
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Infrastructure Portability on Kubernetes with Apache Spark 
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Beam Code
Minikube (Local Dev) OnPrem or Managed Cloud Deployment of Kubernetes

JobService

master

worker worker worker

JobService

master

worker worker worker

Data Scientist and Engineers 
can Iteratively quickly test out 
their Beam Code on their local 
environment that mirrors the 
prod clusters before 
deployment to the prod 
environments

K8S NameSpaceK8S NameSpace

Beam JobBeam Job
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Pipeline Package Management and Deployment on  
Kubernetes with Kustomize
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● The Spark/Flink Runner Cluster deployment process is managed with Kustomize, making 
it easy to version control and manage the deployment via GitOps process

● We can target different deployment environment with Kustomize overlay that overrides 
the base configuration, allowing us to deploy across multiple environments

● We can use Kustomize configuration to target various Kubernetes Infrastructure - 
OnPrem, AWS, GCP, Azure

● It is easy to progressively extend and manage various version of packages that is 
trackable via git release
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Infrastructure Portability with Kubernetes (Apache Spark)

23

Beam Code
Minikube (Local Dev) OnPrem or Manage Cloud Deployment of Kubernetes

JobService

master

worker worker worker

JobService

master

worker worker worker

Data Scientist and Engineers 
can Iteratively quickly test out 
their Beam Code on their local 
environment that mirrors the 
prod clusters before 
deployment to the prod 
environments

K8S NameSpaceK8S NameSpace

Beam JobBeam Job

Spark 
Manifest

Spark 
Manifest

Git Managed Spark 
Manifest gets deployed on 
the Kubernetes Clusters 

Spark Manifest
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Overview and Quick Demo of How it All fits together
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https://docs.google.com/file/d/1C_eIOQXQHgepVaQJlXyMNSpOiJQmR2ai/preview
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So with Apache Beam and Kubernetes …
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● We gain Portability across our development environments

● Easily leverage the functionalities of all the extensive Apache Beam Libraries especially Java

● We use Kustomize Manifest to Deploy the Spark or Flink Clusters on Kubernetes
 



Orchestration of Beam Job 
Deployment with Argo 
Workflows

27
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Implementing ML Workflow Pipelines on Kubernetes
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We have achieved Portability of Code and Portability of Infrastructure!

But beyond that we need to create Workflows that can chain  “Tasks” that we 
need to execute together and while also enforcing the dependencies 
between them
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Introducing Argo Workflow for Orchestrating Workflows
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Argo Workflow is a open source container-native workflow engine for 
orchestrating parallel jobs on Kubernetes

+
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Why Use Argo Workflow with Beam?
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● Runs natively on Kubernetes

● We can define each stage of Beam Job as a task that runs in it’s own 
container

● The Argo Workflow abstraction makes it easy for us to create multi-step 
tasks with varying availability and latencies

● Easy to compose complex tasks as a series of steps and because it’s 
running on kubernetes, it’s easily portable across infrastructure
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Implementing Argo Workflow for Beam Jobs
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KafkaReader 
Enrichment / 

Feature 
Transform 

DataSet Split Model Training

Model Testing

Beam Job Connecting 
to a Kafka Source and 
reading the message + 
writing it to Storage 
Bucket

1

Data Enrichment, with 
other needed Feature 
Transformation

2

Data Preparation for 
Model training / 
testing

3

- ML Engineers / Data Scientists are responsible for different components

- The Components are containerized and Tagged as a Beam Job ( or Any other Job type)

- Argo DSL will be used to compose the Pipeline DAG and Graph
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Implementing Argo Workflow for Beam Jobs

32

 

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
  name: beam-dag
spec:
  entrypoint: main
  templates:
    - name: main
      dag:
        tasks:
          - name: kafka-reader-io
            template: kafka-reader-io
          - name: enrichment-feature-transform
            depends: kafka-reader-io
            template: enrichment-feature-transform
          - name: dataset-split
            depends: enrichment-feature-transform
            template: dataset-split
          - name: model-training
            depends: dataset-split
            template: model-training
          - name: model-testing
            depends: dataset-split
            template: model-testing
    - name: kafka-reader-io
      container:
        image: gcr.io/beam-summit-mlops/kafka-reader-io:latest
    - name: enrichment-feature-transform
      container:
        image: gcr.io/beam-summit-mlops/enrichment-feature-transform:latest
    - name: dataset-split
      container:
        image: gcr.io/beam-summit-mlops/dataset-split:latest
    - name: model-training
      container:
        image: gcr.io/beam-summit-mlops/model-training:latest
    - name: model-testing
      container:
        image: gcr.io/beam-summit-mlops/model-testing:latest

Argo Workflow DAG



Austin, 2022

Implementing Argo Workflow for Beam Jobs

33

 

Argo Workflow DAG
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https://docs.google.com/file/d/1kopd8ZEcH8q0oHFHj5Q_MCuzAmq6NNo_/preview
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Using Argo Events to Trigger Beam Pipeline Workflows
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● Allows for dynamic creation of Argo Workflows to run our beam jobs
● Allows for various event trigger sources such as kafka or calendar events 

(cron jobs)
● You can combine workflows based on conditional triggers
● Cloud agnostic, not tied to any managed service
● Kubernetes native
● Portable across infrastructures
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https://docs.google.com/file/d/1ivYbCpe4lQCvYKni-8KtoaiJgTrItucC/preview


Agile Team Development 
Approach to ML Workflow 
Deployment

37
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Collaborative ML Component Pipeline Development
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ML Engineer

Step 1
- Create Component
- Validate Input/Output
- Create a TestRun
- Inspect Output Artifact

V 1.0.0

V 1.0.0

ML Engineer
V 1.0.N

Step 2
- Create Transform Component
- Validate Input/Output
- Create a TestRun
- Feature Vector ML

Step 3
- Create ML  Component
- Run Pipeline Multiple Times
- Validate Result
- Stage Model for Deployment

1

2

3

TFX
Beam SQL

TFX
Beam SQL

Data Scientist
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Collaborative ML Component Pipeline Development

39

● Each Beam Job runs in Container as manageable Unit

● The Container is versioned / Tracked with other artifacts needed for the 
deployment

● Pipeline for the Workflow is implemented in Argo and also tracked and 
versioned

● The output artifact from the Pipeline run is saved with the Pipeline Run 
Version ID
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Argo Workflow ML Pipeline Components (Versioning)
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PubSub Reader

V 1.0.0

Enrichment 
Transform

V 1.0.0

FeatureStore 
Loader

V 1.0.0

Model Training

V 1.0.0

FeatureStore 
Loader

V 1.0.1

ML Engineer working on a 
particular component can 
branch out and create a new 
version of the component 
without breaking the existing 
implementations
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Argo Workflow ML Pipeline  Workflow (Versioning)
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PubSub Reader

V 1.0.0

Enrichment 
Transform

V 1.0.0

FeatureStore 
Loader

V 1.0.0

Model Training

V 1.0.0

Workflow Pipeline Version 1

PubSub Reader

V 2.0.0

Enrichment 
Transform

V 2.0.0

FeatureStore 
Loader

V 2.0.0

Model Training

V 2.0.0

Workflow Pipeline Version 2



Lessons Learned and 
Summary

42
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Challenges in Building ML Workflow

43

Reproducibility
● Not Easy to Reproduce ML Model Output 

on each iterative runs 
● Constantly Changing Training Data
● Consistent Environment Configuration 

Issues

Reusability
● Training Pipelines are not 

Componentized for Reusability
● No well defined way of doing Model 

versioning and tagging
● Collaboration and sharing of source 

code is not well defined

Manageability
● Managing model deployment and serving 

between environments is difficult
● Versioning and Tracking model artifacts is 

very difficult and complex
● No defined way to visually track updates 

and changes

Automation
● A lot of deployment process is still 

manual
● Steps needed to update model 

parameters are not not automated
● Most data science teams are not 

equipped with the right knowledge to 
take models to production

- Using Argo Workflow 
- Kubernetes

- Containerization with Docker
- Argo Workflow Pipeline
- Leveraging Beam APIs

- Beam Portability
- Infrastructure Portability with Kubernetes
- Argo Workflows
- Configurable Runners

- GitOps
- Kubernetes
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Lessons Learned + Summary
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● Apache Portable Runner Implementation blueprint is very solid even though it’s evolving, 
it makes easy for us to quickly test our implementations on a small scale before 
production deployment

● We are able to leverage Apache Beam / Kubernetes development environment setup to 
make it easy for Data Scientist, ML engineers, Data Engineers to easily collaborate on our 
team

● Version of SDKs, JobService Containers etc, could easily get mismatched, It’s always 
advisable to have a CI environment for testing releases

● Aside from the initial overhead of getting the environment setup, our productivity and 
team efficiency increased significantly

● Cloud is not Cheap, we can easily manage our compute resource utilization
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Q & A!

Thanks for Coming :-) !
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Connect with Us on 
Twitter @mavencode
Github @mavencode

Email: hello@mavencode.com


