
Austin, 2022

Implementing Cloud Agnostic Machine Learning
Workflows With Apache Beam on Kubernetes
By Alexander Lerma & Charles Adetiloye

Austin, 2022 2

About The Presenters

Charles Adetiloye is a Cofounder and Lead

Machine Learning Platforms Engineer at

MavenCode. He has well over 15 years of

experience building large-scale distributed

applications. He has extensive experience working

and consulting with several companies

implementing production grade ML platforms.

twitter.com/cadetiloye

Alexander Lerma is a Machine Learning Platforms

Engineer at MavenCode. He has 10 years of

experience working as a Software Engineer and

MLOps Engineer. Previously worked with Goldman

Sachs, Twitter, and a few other startups.

twitter.com/neuralnetes

Austin, 2022 3

About MavenCode

twitter.com/mavencode

MavenCode is an Artificial Intelligence Solutions Company with HQ in Dallas, Texas and remote delivery

workforce across multiple time zones. We do training, product development and consulting services with

specializations in:

● Provisioning Scalable AI and ML Infrastructure - OnPrem and In the Cloud

● Development & Production Operationalization of ML platforms - OnPrem and In the Cloud

● Streaming Data Analytics and Edge IoT Model Deployment for Federated Learning

● Building out Data lake, Feature Store, and ML Model Management platform

Austin, 2022

Agenda for Today

4

1 Making the Case for Cloud Agnostic ML Deployments

2 Building it all on Kubernetes

3 Orchestration of Beam Job Deployments with Argo Workflows

4 Agile Team Approach to ML Workflow Deployment

5 Lessons Learned and Summary

Making the Case for
Cloud Agnostic Machine
Learning Deployments

5

01

Austin, 2022

Overview of Machine Learning Workflow

6

1. The goal of any Machine Learning application is to build a Statistical Model using curated data
and applying Machine Learning algorithms to them.

2. The main artifacts of any Machine Learning Projects are Data, ML Model and the Code.

3. This is how a Simplified ML Workflow looks

DATA
ACQUISITION

IoT Devices Databases
Unstructured
FileSystems

DATA
PREPARATION

Curated Dataset

FEATURE
ENGINEERING

Visualization and PCA

MODEL
TRAINING

- Tuning
- Error Analysis
- Model Selection

DEPLOYMENT

- Model Packaging
- Model Monitoring
- Model Explainability

#
#
#
#
#
#
#
#
#
#

Austin, 2022

Challenges in Building ML Workflow

7

Reproducibility
● Not Easy to Reproduce ML Model Output

on each iterative runs
● Constantly Changing Training Data
● Consistent Environment Configuration

Issues

Reusability
● Training Pipelines are not

Componentized for Reusability
● No well defined way of doing Model

versioning and tagging
● Collaboration and sharing of source

code is not well defined

Manageability
● Managing model deployment and serving

between environments is difficult
● Versioning and Tracking model artifacts is

very difficult and complex
● No defined way to visually track updates

and changes

Automation
● A lot of deployment process is still

manual
● Steps needed to update model

parameters are not not automated
● Most data science teams are not

equipped with the right knowledge to
take models to production

Austin, 2022

Building ML Workflows in Reality could be Complex!

8

● Many Data Sources - Databases, File Systems, Storage Buckets, Streaming Data.

● The Data Sources in most cases are siloed across different locations with various
access requirements: In-House datasets, Third Party, Public datasets.

● Different Data Protection Requirements - PI data, GDPR restrictions etc

● Data Availability in some cases are time-bounded! Streaming or Batched delivered
Hourly, Daily, Monthly etc

Austin, 2022

Typical ML workflow in Reality is more Complex!

9

Data Exploration

Data Wrangling Refined Data

DELTA LAKE Feature Store

Feature
Groups 1

Feature
Groups 2

Feature
Groups N

Streaming Data Source

Batched Data Source

Structured “SQL” Data Source

Ingest Data from
various sources with
different
characteristics using
Beam IO SDK

1 Write the Ingested data into Delta Lake with
Beam IO writers

Expose data in a structure that can be queried
for wrangling or quick exploratory analysis by
Data Scientist or Data Engineers

2

ML Model Training / Testing and
Tuning until the best
performance is achieved

3
- Model Management and
Deployment Rollout
- Post Deployment Monitoring

4

Model Management

Model Management

Austin, 2022

Our Approach to ML Workflow Deployment

10

● We have a Polyglot team. Use the best tool to solve the problem, as long as we can containerize
it, so we have beam pipeline codes written in Go, Scala, Java and Python

● Make use of Apache Beam’s Runtime portability makes it easy for us to do local controlled
testing of our ML pipelines

● We build our components to be reusable, Data Source, Data Writer, Feature Store Components,
Model Training Components, and Model Serving Components

● Versioned Containerized Workflow Pipeline with Argo Workflow

● For team efficiency and consistency, we leverage Containers built on Kubernetes to gain
portability across infrastructure

Austin, 2022

Embracing the Apache Beam Philosophy

11

Beam Java Beam Python

Pipeline (Runner API)

Direct Runner

Beam Go

Flink Runner Spark Runner Dataflow
Runner

Data Engineer
Implementing
Production Ready
Data Pipeline in Java

Data Scientist writing
ML Codes with Beam
Dataframes, and Beam
SQL

Beam Advantage
Unified Data Pipeline (Stream + Batch)

Multi-Language Support (with new Portable Runner for Java/Python/Go)

Multiple Runner Support (Direct, Flink, Spark and Dataflow)

Beam ML, Beam Dataframe and TFX integration for ML workloads

Still very early stage
for us

Austin, 2022

With Kubernetes Added, ML Deployment is Easier

12

Beam Java Beam Python

Pipeline (Runner API)

Beam Go

Data Engineer
Implementing
Production Ready
Data Pipeline in Java

Data Scientist writing
ML Codes with Beam
Dataframes, and Beam
SQL

Beam Advantage
Unified Data Pipeline (Stream + Batch)

Multi-Language Support (with new Portable Runner for Java/Python/Go)

Multiple Runner Support (Direct, Flink, Spark and Dataflow)

Beam ML, Beam Dataframe and TFX integration for ML workloads

Direct Runner Flink Runner Spark Runner

Kubernetes Advantage
Infrastructure Agnostic Setup!

Still very experimental
not enough proven
use-cases

Austin, 2022

Advantages of Running Apache Beam ML
Pipeline on Kubernetes

13

● Leverage Beams Portability, Multi-Language Semantics that now allows support for Python, Java, Scala and
Golang, In addition we can use External Transforms to make calls from Python to Java Code

● Rich beam Library and API available to handle each stage of Workflow process, TFX, Beam SQL, and
connector IOs

● Beam Job a can be Containerized as Unit of work that can be easily maintained on its own and deployed on
the Kubernetes Cluster

● Infrastructure Portability on Kubernetes makes it easy to share or migrate between local kubernetes
environment and production or development environments

● Consistency between operating environment for Data Scientist, ML Engineers and what is finally deployed

● Ease of debugging and testing on Local environment before deployment

Building it All on
Kubernetes

14

02

Austin, 2022

Building Apache Beam ML Pipeline Stack on
Kubernetes

15

Direct Runner Flink Runner Spark Runner

Beam Java Beam Python

Pipeline (Runner API)

Beam Go Portability of Coding Semantics (Java, Scala, Python, Go or SQL)1

Portability of Across Runners (Direct Runner, Flink Runner, Spark Runner,
Dataflow Runner)2

Portability of Across Compute Infrastructure - Local Dev, OnPrem or Cloud3

Austin, 2022

Portability in Apache Beam

16

Beam Java

Beam Python

Beam Golang

Future SDK
Implementations

 ?

Spark Runner

Flink Runner

Samza Runner

Dataflow Runner

Other Runner
Implementations

Beam Model Pipeline
Construction with
Runner API (Proto)

Beam Model
Execution: (Fn API)

Java Execution
Environment

Python Execution
Environment

Golang Execution
Environment

Future Execution Env
ImplementationsThe Runner API

provides SDK and
Runner Independent
definition of the Beam
Pipeline

Fn API allows the
Runner to invoke SDK
specific environment

Austin, 2022

Portability in Apache Beam

17

Beam Java

Beam Python

Beam Golang

Future SDK
Implementations

 ?

Spark Runner

Flink Runner

Samza Runner

Dataflow Runner

Other Runner
Implementations

Beam Model Pipeline
Construction with
Runner API (Proto)

Beam Model
Execution: (Fn API)

Java Execution
Environment

Python Execution
Environment

Golang Execution
Environment

Future Execution Env
ImplementationsThe Runner API

provides SDK and
Runner Independent
definition of the Beam
Pipeline

Fn API allows the
Runner to invoke SDK
specific environment

Austin, 2022

How Apache Beam Portability Works

18

import apache_beam as beam
from apache_beam.options.pipeline_options import
PipelineOptions

options = PipelineOptions([
 "--runner=PortableRunner",
 "--job_endpoint=localhost:8099",
 "--environment_type=DOCKER"
])
with beam.Pipeline(options) as p:
 ...

docker run apache/beam_spark_job_server:latest
—spark-master-url=spark://<SPARK_MASTER_URL>:7077

OR

docker run apache/beam_flink1.14_job_server:latest
—flink-master=<FLINK_MASTER_URL>:8081

Beam Job Example Job Service Endpoint Deployment Clusters

Developer Implements
Beam Job in Local
Environment in this
Case Python

1
Starts up a Job Service
Runner that targets
the specific ENV they
want

2
JobService Runner
Deploys Job to remote
or local Spark or Flink
Cluster

3

Austin, 2022

How Apache Beam Portability Works

19

import apache_beam as beam
from apache_beam.options.pipeline_options import
PipelineOptions

options = PipelineOptions([
 "--runner=PortableRunner",
 "--job_endpoint=localhost:8099",
 "--environment_type=LOOPBACK"
])
with beam.Pipeline(options) as p:
 ...

docker run apache/beam_spark_job_server:latest
—spark-master-url=spark://<SPARK_MASTER_URL>:7077

OR

docker run apache/beam_flink1.14_job_server:latest
—flink-master=<FLINK_MASTER_URL>:8081

Beam Job Example Job Service Endpoint Deployment Clusters

Developer Implements
Beam Job in Local
Environment in this
Case Python

1
Starts up a Job Service
Runner that targets
the specific ENV they
want

2

JobService Runner
Deploys Job to remote
or local Spark or Flink
Cluster

3

OR

Austin, 2022

Beam Portability Advantages

20

● Rich set of IOs already implemented In Beam Java can be invoked in Python, GO etc

● Using Expansion Service with External Transforms to call Java APIs

from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.io.kafka import ReadFromKafka

p = beam.Pipeline(options=pipeline_options)

res = (p | 'ReadFromKafka' >> ReadFromKafka(consumer_config={"bootstrap.servers": "localhost:9092"},topics=["<TOPICS>"])

from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.io.kafka import ReadFromKafka

p = beam.Pipeline(options=pipeline_options)

res = (p | 'ReadFromKafka' >> ReadFromKafka(consumer_config={"bootstrap.servers": "localhost:9092"},topics=["<TOPICS>"]

| 'ReadFromKafka' >> beam.JavaExternalTransform("org.apache.beam.sdk.io.TextIO").write().to("<STORAGE_PATH>")

Austin, 2022

Infrastructure Portability on Kubernetes with Apache Spark

21

Beam Code
Minikube (Local Dev) OnPrem or Managed Cloud Deployment of Kubernetes

JobService

master

worker worker worker

JobService

master

worker worker worker

Data Scientist and Engineers
can Iteratively quickly test out
their Beam Code on their local
environment that mirrors the
prod clusters before
deployment to the prod
environments

K8S NameSpaceK8S NameSpace

Beam JobBeam Job

Austin, 2022

Pipeline Package Management and Deployment on
Kubernetes with Kustomize

22

● The Spark/Flink Runner Cluster deployment process is managed with Kustomize, making
it easy to version control and manage the deployment via GitOps process

● We can target different deployment environment with Kustomize overlay that overrides
the base configuration, allowing us to deploy across multiple environments

● We can use Kustomize configuration to target various Kubernetes Infrastructure -
OnPrem, AWS, GCP, Azure

● It is easy to progressively extend and manage various version of packages that is
trackable via git release

Austin, 2022

Infrastructure Portability with Kubernetes (Apache Spark)

23

Beam Code
Minikube (Local Dev) OnPrem or Manage Cloud Deployment of Kubernetes

JobService

master

worker worker worker

JobService

master

worker worker worker

Data Scientist and Engineers
can Iteratively quickly test out
their Beam Code on their local
environment that mirrors the
prod clusters before
deployment to the prod
environments

K8S NameSpaceK8S NameSpace

Beam JobBeam Job

Spark
Manifest

Spark
Manifest

Git Managed Spark
Manifest gets deployed on
the Kubernetes Clusters

Spark Manifest

Austin, 2022

Overview and Quick Demo of How it All fits together

24

Austin, 2022 25

https://docs.google.com/file/d/1C_eIOQXQHgepVaQJlXyMNSpOiJQmR2ai/preview

Austin, 2022

So with Apache Beam and Kubernetes …

26

● We gain Portability across our development environments

● Easily leverage the functionalities of all the extensive Apache Beam Libraries especially Java

● We use Kustomize Manifest to Deploy the Spark or Flink Clusters on Kubernetes

Orchestration of Beam Job
Deployment with Argo
Workflows

27

03

Austin, 2022

Implementing ML Workflow Pipelines on Kubernetes

28

We have achieved Portability of Code and Portability of Infrastructure!

But beyond that we need to create Workflows that can chain “Tasks” that we
need to execute together and while also enforcing the dependencies
between them

Austin, 2022

Introducing Argo Workflow for Orchestrating Workflows

29

Argo Workflow is a open source container-native workflow engine for
orchestrating parallel jobs on Kubernetes

+

Austin, 2022

Why Use Argo Workflow with Beam?

30

● Runs natively on Kubernetes

● We can define each stage of Beam Job as a task that runs in it’s own
container

● The Argo Workflow abstraction makes it easy for us to create multi-step
tasks with varying availability and latencies

● Easy to compose complex tasks as a series of steps and because it’s
running on kubernetes, it’s easily portable across infrastructure

Austin, 2022

Implementing Argo Workflow for Beam Jobs

31

KafkaReader
Enrichment /

Feature
Transform

DataSet Split Model Training

Model Testing

Beam Job Connecting
to a Kafka Source and
reading the message +
writing it to Storage
Bucket

1

Data Enrichment, with
other needed Feature
Transformation

2

Data Preparation for
Model training /
testing

3

- ML Engineers / Data Scientists are responsible for different components

- The Components are containerized and Tagged as a Beam Job (or Any other Job type)

- Argo DSL will be used to compose the Pipeline DAG and Graph

Austin, 2022

Implementing Argo Workflow for Beam Jobs

32

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 name: beam-dag
spec:
 entrypoint: main
 templates:
 - name: main
 dag:
 tasks:
 - name: kafka-reader-io
 template: kafka-reader-io
 - name: enrichment-feature-transform
 depends: kafka-reader-io
 template: enrichment-feature-transform
 - name: dataset-split
 depends: enrichment-feature-transform
 template: dataset-split
 - name: model-training
 depends: dataset-split
 template: model-training
 - name: model-testing
 depends: dataset-split
 template: model-testing
 - name: kafka-reader-io
 container:
 image: gcr.io/beam-summit-mlops/kafka-reader-io:latest
 - name: enrichment-feature-transform
 container:
 image: gcr.io/beam-summit-mlops/enrichment-feature-transform:latest
 - name: dataset-split
 container:
 image: gcr.io/beam-summit-mlops/dataset-split:latest
 - name: model-training
 container:
 image: gcr.io/beam-summit-mlops/model-training:latest
 - name: model-testing
 container:
 image: gcr.io/beam-summit-mlops/model-testing:latest

Argo Workflow DAG

Austin, 2022

Implementing Argo Workflow for Beam Jobs

33

Argo Workflow DAG

Austin, 2022 34

https://docs.google.com/file/d/1kopd8ZEcH8q0oHFHj5Q_MCuzAmq6NNo_/preview

Austin, 2022

Using Argo Events to Trigger Beam Pipeline Workflows

35

● Allows for dynamic creation of Argo Workflows to run our beam jobs
● Allows for various event trigger sources such as kafka or calendar events

(cron jobs)
● You can combine workflows based on conditional triggers
● Cloud agnostic, not tied to any managed service
● Kubernetes native
● Portable across infrastructures

Austin, 2022 36

https://docs.google.com/file/d/1ivYbCpe4lQCvYKni-8KtoaiJgTrItucC/preview

Agile Team Development
Approach to ML Workflow
Deployment

37

04

Austin, 2022

Collaborative ML Component Pipeline Development

38

ML Engineer

Step 1
- Create Component
- Validate Input/Output
- Create a TestRun
- Inspect Output Artifact

V 1.0.0

V 1.0.0

ML Engineer
V 1.0.N

Step 2
- Create Transform Component
- Validate Input/Output
- Create a TestRun
- Feature Vector ML

Step 3
- Create ML Component
- Run Pipeline Multiple Times
- Validate Result
- Stage Model for Deployment

1

2

3

TFX
Beam SQL

TFX
Beam SQL

Data Scientist

Austin, 2022

Collaborative ML Component Pipeline Development

39

● Each Beam Job runs in Container as manageable Unit

● The Container is versioned / Tracked with other artifacts needed for the
deployment

● Pipeline for the Workflow is implemented in Argo and also tracked and
versioned

● The output artifact from the Pipeline run is saved with the Pipeline Run
Version ID

Austin, 2022

Argo Workflow ML Pipeline Components (Versioning)

40

PubSub Reader

V 1.0.0

Enrichment
Transform

V 1.0.0

FeatureStore
Loader

V 1.0.0

Model Training

V 1.0.0

FeatureStore
Loader

V 1.0.1

ML Engineer working on a
particular component can
branch out and create a new
version of the component
without breaking the existing
implementations

Austin, 2022

Argo Workflow ML Pipeline Workflow (Versioning)

41

PubSub Reader

V 1.0.0

Enrichment
Transform

V 1.0.0

FeatureStore
Loader

V 1.0.0

Model Training

V 1.0.0

Workflow Pipeline Version 1

PubSub Reader

V 2.0.0

Enrichment
Transform

V 2.0.0

FeatureStore
Loader

V 2.0.0

Model Training

V 2.0.0

Workflow Pipeline Version 2

Lessons Learned and
Summary

42

05

Austin, 2022

Challenges in Building ML Workflow

43

Reproducibility
● Not Easy to Reproduce ML Model Output

on each iterative runs
● Constantly Changing Training Data
● Consistent Environment Configuration

Issues

Reusability
● Training Pipelines are not

Componentized for Reusability
● No well defined way of doing Model

versioning and tagging
● Collaboration and sharing of source

code is not well defined

Manageability
● Managing model deployment and serving

between environments is difficult
● Versioning and Tracking model artifacts is

very difficult and complex
● No defined way to visually track updates

and changes

Automation
● A lot of deployment process is still

manual
● Steps needed to update model

parameters are not not automated
● Most data science teams are not

equipped with the right knowledge to
take models to production

- Using Argo Workflow
- Kubernetes

- Containerization with Docker
- Argo Workflow Pipeline
- Leveraging Beam APIs

- Beam Portability
- Infrastructure Portability with Kubernetes
- Argo Workflows
- Configurable Runners

- GitOps
- Kubernetes

Austin, 2022

Lessons Learned + Summary

44

● Apache Portable Runner Implementation blueprint is very solid even though it’s evolving,
it makes easy for us to quickly test our implementations on a small scale before
production deployment

● We are able to leverage Apache Beam / Kubernetes development environment setup to
make it easy for Data Scientist, ML engineers, Data Engineers to easily collaborate on our
team

● Version of SDKs, JobService Containers etc, could easily get mismatched, It’s always
advisable to have a CI environment for testing releases

● Aside from the initial overhead of getting the environment setup, our productivity and
team efficiency increased significantly

● Cloud is not Cheap, we can easily manage our compute resource utilization

Austin, 2022

Q & A!

Thanks for Coming :-) !

45

Connect with Us on
Twitter @mavencode
Github @mavencode

Email: hello@mavencode.com

