Oops, | Wrote a Portable
Runner in Go

Robert Burke
@lostluck

— Didn't F&nish Writing

Oops, |'Wrete-a Portable
Runner in Go

Robert Burke
@lostluck

How to

Implement an
SDK Feature?

Look at how other SDKs do it.
Implement.

Unit test.

Integration testing.

YN

MMMMMM

Capability Matrix

What is being computed?

Google Cloud
Dataflow

Apache Spa

Rperche Flink (RDD/DStream

ParDo v v v
GroupByKey v v ~
Flatten v 4 v
Combine v v v

Composite Transforms

=A Austin, 2022 5
M M

https://beam.apache.org/documentation/runners/capability-matrix/

Map Side Inputs

Declare the side input

—

ProcessElement (..., lookup func(K) func(*V) bool,...){

vals := lookup(key) Look up an iterator for a key

var val Vv

for vals(&val) { ... }= Iterate over associated values

=A Austin, 2022 6
M M

Map Side Inputs

Declare the <=-

ProcessElement(..., lookup fr- @“ngeN
vals := look ﬂa“ N | Look up an iterator for a key
var v2’ (‘(U

for »‘f a Iterate over associated values

=A Austin, 2022 7
MM

Cross Bundle Cache

ProcessElement (..., lookup func(K) func(*V) bool,...){

vals := lookup(key)
var val V Caching Observed?

for vals(&val) { ... }

=A Austin, 2022 8
M M

O

Cross Bundle Cache N =

import “github.com/apache/beam/sdks/v2/go/pkg/beam/util/harnessopts”

func main() {
flags.Parse()

harnessopts.SideInputCacheCapacity(*cacheKeyCount)

beam.Init()

=A Austin, 2022 9
M M

Cross Bundle Cache

ProcessElement(..., lookup func(K) func(*V) bool,..

timestamps.Update(ctx,time.Now().UnixNano())
vals := lookup(key)
var val Vv

for vals(&val) { ... }
timestamps.Update(ctx,time.Now().UnixNano())

=A Austin, 2022
M M

A

Cross Bundle Cache

ProcessElement(., lookup fi-

eN“:@
timestamps.!’- @8“% () -UnixNano())
vals °- (‘(U Caching Observed?

fOI _o(&Val) {
timestamps. Update(ctx time.Now().UnixNano())

Austin, 2022

Capability Matrix

What is being computed?

Google Cloud
Dataflow

Apache Spa

Rperche Flink (RDD/DStream

ParDo v v v
GroupByKey v v ~
Flatten v 4 v
Combine v v v

Composite Transforms

=A Austin, 2022 12
M M

https://beam.apache.org/documentation/runners/capability-matrix/

Cross Bundle Cache

ProcessElement(., lookup fi-

eN“:@
timestamps.!’- @8“% () -UnixNano())
vals °- (‘(U Caching Observed?

fOI _o(&Val) {
timestamps. Update(ctx time.Now().UnixNano())

Austin, 2022

Portable Worker

FnAPI

SDK <—:—> Runner

Austin, 2022

Beam has a
Testing Problem

Austin, 2022

15

My Runner’s
Goals

S

SDK Testing focused

Low Bar: Supercede Go Direct
Runner

Local & Single Machine

In Memory

Per-Pipeline Configurable

High Bar: Run Java and Python
pipelines

Contribute it to the repo

T

Names are hard

Name possibilities

local: emphasises it's not a distributed computation, but limits growth in that direction.

fake: tongue-in-cheek reference to test fakes which represent using a full implementation but
may take some shortcuts that aren’t appropriate in production

beam: It is what it is, but confusing to all future runners.

model: Clear, unambiguous that it represents implementation of the beam model. Might be
confusing when discussion the model though (does model implement foo...)

unit: Emphasises its suitability for unit testing, in unoptimized mode.

portable: Might get conflated with the Python portable runner.

universal: Might get confused with the decommissioned Java universal runner.

teach: emphasises the customizability and pedagogical benefits of the runner.

comp: emphasises the ability to validate different components.

collab: emphasises how the runner collaborates with SDKs to make testing things easier.
But easily mistaken for Google Colab.

sdk: improved reference point runner -> each sdk has a Direct runner, so the term is
confusing. Calling the the sdk runner or the gosdk runner avoids the confusion, and makes it
rather clear about the implementation of it is. Bad point: then the packaging can get
confusion: is the problem in the Go sdk or the gosdk?

<some nhot generic name>: care needs to be taken against being confused with other
products and features in the data processing space.

handlebar: it gives control to pipelines for how it will execute (might be confused with the
related moustache templates extension)|

prism: It splits the Beam into its component parts, makes it visible.

lens: It focuses Beam into a pinpoint for consistent testing.

Austin, 2022

What I've got so far

P master v experimental / local / internal /

{ ., lostluckG move preprocessor to it's own file

README.md move preprocessor to it's own file
artifact.go Use rudimentary VLog.
bundles.go move preprocessor to it's own file

coders.go [local] KV Iterable Side Inputs

Austin, 2022

https://github.com/lostluck/experimental/tree/master/local/internal

Loopback

func Execute(ctx context.Context, p *beam.Pipeline) (beam.PipelineResult, error) {
if *jobopts.Endpoint == "" {
// One hasn't been selected, so lets start one up and set the address.
// Conveniently, this means that if multiple pipelines are executed against
// the local runner, they will all use the same server.
s := internal.NewServer(0)
*jobopts.Endpoint = s.Endpoint()
go s.Serve()
}
if !jobopts.IsLoopback() {
// log.Infof(ctx, "Environment type: %v, forcing loopback, as the local runner
*jobopts.EnvironmentType = "loopback"

}

return universal.Execute(ctx, p)

Austin, 2022

https://github.com/lostluck/experimental/tree/master/local/internal

// Goroutine for executing bundles on the worker. tranSformS = map[string]*pipepb PTransform{

go func() {
// Send nil to start, Impulses won't require parental translation. tid: t, // The Transform to Execute!
processed <- nil
for b := range toProcess {
b.ProcessOn(wk) // Blocks until finished.
// Metrics?
j.metrics.contributeMetrics(<-b.Resp)

// Send back for dependency handling afterwards.

processed <- b reconcileCoders(coders, pipeline.GetComp

5

close(processed)

30

desc := &fnpb.ProcessBundleDescriptor{
Id: bundID,
Transforms: transforms,

// prevs is a map from current transform ID to a map from local ids to b

prevs := map[string]map[string]*bundle{} WindowingStrategies: pipeline.GetCo

Pcollections: pipeline.GetCo
:= range topo { Coders: coders,

// Block until the previous bundle is done. StateApiServiceDescriptor: &pipepb.

<-processed Url: wk.Endpoint(),

= AM Austin, 2022 20

https://github.com/lostluck/experimental/tree/master/local/internal

GBKs

func gbkBytes(ws *pipepb.wWindowingStrategy, wc exec.WindowDecoder, kc, vc
var outputTime func(typex.wWindow, mtime.Time) mtime.Time
switch ws.GetOutputTime() {
case pipepb.OutputTime_END_OF_WINDOW:
outputTime = func(w typex.Window, et mtime.Time) mtime.Time {
return w.MaxTimestamp()
3
default:
logger.Fatalf("unsupported OutputTime behavior: %v", ws.GetOutputTime())

type keyTime struct {

key [1byte

w typex.wWindow
time mtime.Time
values [][]byte

to a map of to a map of keys to time

2 ultimately emit the C the key, the time, and the iterable of
windows := map[typex.Window]map[string]keyTime{}

:= pullDecoder(kc, coders)

:= pullDecoder(vc, coders)

d to get the

Austin, 2022

https://github.com/lostluck/experimental/tree/master/local/internal

What I've got so far

One PTransform at at time.
ParDos

GBKs

Unlifted Combines

Metrics

=A Austin, 2022 22
M M

https://github.com/lostluck/experimental/tree/master/local/internal

Example:
CombineFns

23

CombineFn

Input | -> Accumulator A -> Output O

e CreateAccumulator () ->A

e Add Input (1, A) -> A
e Merge Accumulators (A, A) -> A
e Extract Output (A) >0

Austin, 2022

CombineFn

Input | == Accumulator A == Output O

e Merge Accumulators (A, A) -> A

Austin, 2022

Combiner Lifting

Unlifted Lifted
Merge
Merge Merge

=A Austin, 2022 26
M M

CombineFn

Input I I= Accumulator A == Output O

e Add Input (1, A) -> A
e Merge Accumulators (A, A) -> A
e Extract Output (A) >0

Austin, 2022

Combiner Lifting

Unlifted Lifted
Add Input
Add Input Merge
Extract Extract
Output Output

=A Austin, 2022 28
M M

Combiner Lifting

e Used in Batch execution
o Bigger bundles, more benefit
e Not used in Streaming execution
o Small bundles, negligible benefit

Austin, 2022

Example:
SplittableDoFns

30

Splittable DoFns

CreatelnitialRestriction
CreateTracker
SplitRestriction
RestrictionSize

..and more

Austin, 2022

My Runner’s
“Secret” Goals

Modular

Production features
o Optimized Execution Graph
o Disk Spillover

Automation of Testing SDK
Features

32

Oops, | Wrote a Portable
Runner in Go

Robert Burke
@lostluck

Related Talks

Writing a native Go streaming pipeline

Tuesday 16:15-16:40 CDT, Room 203
with Danny McCormick and Jack McCluskey

zl11

Austin, 2022

https://2022.beamsummit.org/sessions/native-go-pipeline/

Direct
Runners are

MMMMMM

35

Direct Runners
are Bad

Austin, 2022

36

