Six Principles of Pipeline Design,
Taken From The Apollo Missions

Israel Herraiz, Paul Balm

Co)
- <
| =

~/(
A Let'sMet in
M

| T Texas!

2l

S U



Israel Herraiz Paul Balm

Google Cloud



“Light Years Ahead: The 1969 Apollo
Guidance Computer” — Robert Wills

) o
e, Gl
‘ Light years ahead
| "

youtube.com/watch?v=VYI0Kf 1wgk



https://www.youtube.com/watch?v=VYI0Kf_1wqk

An Eventful Journey




Similarities to pipelines in the cloud

Launching a pipeline in the cloud is like launching a spacecraft (...almost)

‘ Once launched, control is limited
a Observability depends on preparation
e Mistakes can be expensive




Similarities to pipelines in the cloud

Launching a pipeline in the cloud is like launching a spacecraft (...almost)

Metrics

T

Input — Transformations — Output

T

Control




Principle: Use a high-level language

Descent orbit insertion

Command and service

module orbit (60 mi) s medole deseent

orbit (60 miles by
50 000 feet)

= Sun

Orbit of sl

Powered
command descent

initiation Image source: Apollo 11 Mission
module Report, MSC-00171. November

1969, NASA/Manned Spacecraft
Center, Houston, TX.

Earth




Principle: Use a high-level language




Principle: Use a high-level language

Java

Cross-language pipeline support

beam.apache.org/documentation/programming-guide/#multi-language-pipelines

2022.beamsummit.org/sessions/beam-cross-language-transforms/



https://beam.apache.org/documentation/programming-guide/#multi-language-pipelines
https://2022.beamsummit.org/sessions/beam-cross-language-transforms/

Principle: Divide your program into jobs




Principle: Divide your program into jobs

<

L

e




Principle: Divide your program into jobs

Read Process Write

!
8
N

- O - . . S .



Principle: Divide your program into jobs

Read Process Write

Write reusable PTrancforms, and ctructure your pipeline as Plransforms

beam.apache.org/contribute/ptransform-style-guide/



https://beam.apache.org/contribute/ptransform-style-guide/

Principle: Restart on failure




Principle: Restart on failure

Design jobs for gapless processing
(error handling, dead letter queue)

Considering draining vs. canceling a pipeline’

Run a parallel updated pipeline

cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-deploying

2022.beamsummit.org/sessions/error-handling-asgarde/

github.com/tosun-si/asgarde

*runner specific feature


https://cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-deploying#updating_streaming_pipelines_in_production
https://2022.beamsummit.org/sessions/error-handling-asgarde/
https://github.com/tosun-si/asgarde

Principle: Checkpoint good state




Principle: Checkpoint good state

‘ Reshuffles trigger a checkpoint and interacts with 1/O

a Behaviour is Runner dependent: Checkpoint in Dataflow and Flink




Principle: Hardware monitors software

Service-
Level
Indicator
(SLI)

Service
Level
Objective
(SLO)

Service-
level
agreement
(SLA)




Principle: Hardware
monitors software

O Search or jump to...




Principle: Hardware monitors software

Service-
level
agreement

Service
Level
Objective

Service-
Level
Indicator

(SLI) (SLO) (SLA)

Data Freshness e Create alerting policy s S
22s
20s
18s
16s
145
128

6 PM Thu 18 6 AM 12PM 6 PM Fri19 6 AM 12PM

@ data_watermark_age text_to_bigquery_mp_5_stream : 20.50s

cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-planning

sre.google/resources/book-update/data-processing-pipelines/



https://cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-planning
https://sre.google/resources/book-update/data-processing-pipelines/

Principle: Send Telemetry




Principle: Send Telemetry




Principle: Send Telemetry

Beam Metrics:
— Counter

— Distribution
— Gauge

e Low-level metrics
e Business-level metrics

*Not all metrics are supported by all runners
beam.apache.org/documentation/runners/capability-matrix/what-is-being-computed/



https://beam.apache.org/documentation/runners/capability-matrix/what-is-being-computed/

Conclusions




Recap: The Six Principles

a High-level language: leverage cross lang pipelines if necessary
a Divide and conquer: write reusable PTransforms, compose pipelines

e Restart on failure: write fault tolerant, gapless, resilient pipelines
° Checkpoint: reshuffle/shuffling to create backtracking barriers
e Monitor: define SLOs from the planning phase, monitor accordingly

° Telemetry: produce business level metrics, use them SLOs too




Conclusions

Pipelines and aircrafts are not exactly the
same, but both have to land successfully.

Don't hope for the best. Prepare. Hope is
not a strategy.

Further reading:

Building production-ready data pipelines
using Dataflow

Design your pipeline
Create vour pipeline
Test your pipeline

SRE Data Processing Pipelines



https://cloud.google.com/solutions/building-production-ready-data-pipelines-using-dataflow-overview
https://cloud.google.com/solutions/building-production-ready-data-pipelines-using-dataflow-overview
https://beam.apache.org/documentation/pipelines/design-your-pipeline/
https://beam.apache.org/documentation/pipelines/create-your-pipeline/
https://beam.apache.org/documentation/pipelines/test-your-pipeline/
https://sre.google/resources/book-update/data-processing-pipelines/

Thank you!




