
Six Principles of Pipeline Design, 
Taken From The Apollo Missions
Israel Herraiz, Paul Balm



Israel Herraiz Paul Balm



“Light Years Ahead: The 1969 Apollo 
Guidance Computer” – Robert Wills

youtube.com/watch?v=VYI0Kf_1wqk 

https://www.youtube.com/watch?v=VYI0Kf_1wqk


An Eventful Journey



Similarities to pipelines in the cloud

Observability depends on preparation

1

2

Once launched, control is limited

Launching a pipeline in the cloud is like launching a spacecraft (...almost)

Mistakes can be expensive3



Similarities to pipelines in the cloud

Transformations

Launching a pipeline in the cloud is like launching a spacecraft (...almost)

Input Output

Metrics

Control



Principle: Use a high-level language1

Image source: Apollo 11 Mission 
Report, MSC-00171. November 
1969, NASA/Manned Spacecraft 
Center, Houston, TX.

Moon

Orbit of 
command 
module



Principle: Use a high-level language1



Principle: Use a high-level language1

Cross-language pipeline support

beam.apache.org/documentation/programming-guide/#multi-language-pipelines 
2022.beamsummit.org/sessions/beam-cross-language-transforms/ 

https://beam.apache.org/documentation/programming-guide/#multi-language-pipelines
https://2022.beamsummit.org/sessions/beam-cross-language-transforms/


Principle: Divide your program into jobs
1
2



Principle: Divide your program into jobs
1
2



Principle: Divide your program into jobs
1
2

PTransform PTransform PTransform

Read Process Write



Principle: Divide your program into jobs
1
2

PTransform PTransform PTransform

Read Process Write

beam.apache.org/contribute/ptransform-style-guide/ 

Write reusable PTransforms, and structure your pipeline as PTransforms

https://beam.apache.org/contribute/ptransform-style-guide/


Principle: Restart on failure

1
2
3



Principle: Restart on failure
1
2
3

Considering draining vs. canceling a pipeline*

1

2

Design jobs for gapless processing 
(error handling, dead letter queue)

Run a parallel updated pipeline3

*runner specific feature

cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-deploying

2022.beamsummit.org/sessions/error-handling-asgarde/ 

github.com/tosun-si/asgarde 

https://cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-deploying#updating_streaming_pipelines_in_production
https://2022.beamsummit.org/sessions/error-handling-asgarde/
https://github.com/tosun-si/asgarde


Principle: Checkpoint good state

1
2
3
4



Principle: Checkpoint good state

1
2
3
4

Reshuffles trigger a checkpoint and interacts with I/O1

Behaviour is Runner dependent: Checkpoint in Dataflow and Flink2



Principle: Hardware monitors software1
2
3
4
5



Principle: Hardware 
monitors software

1
2
3
4
5



Principle: Hardware monitors software1
2
3
4
5

cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-planning 

sre.google/resources/book-update/data-processing-pipelines/ 

https://cloud.google.com/architecture/building-production-ready-data-pipelines-using-dataflow-planning
https://sre.google/resources/book-update/data-processing-pipelines/


Principle: Send Telemetry

1
2
3
4
5
6



Principle: Send Telemetry

1
2
3
4
5
6



Principle: Send Telemetry1
2
3
4
5
6

Beam Metrics*:
→ Counter
→ Distribution
→ Gauge

*Not all metrics are supported by all runners 
beam.apache.org/documentation/runners/capability-matrix/what-is-being-computed/ 

● Low-level metrics
● Business-level metrics

https://beam.apache.org/documentation/runners/capability-matrix/what-is-being-computed/


Conclusions



Recap: The Six Principles
High-level language: leverage cross lang pipelines if necessary1

Divide and conquer: write reusable PTransforms, compose pipelines2

Restart on failure: write fault tolerant, gapless, resilient pipelines3

Checkpoint: reshuffle/shuffling to create backtracking barriers4

Monitor: define SLOs from the planning phase, monitor accordingly5

Telemetry: produce business level metrics, use them SLOs too6



Conclusions1
2
3
4
5

Pipelines and aircrafts are not exactly the 
same, but both have to land successfully.

Don't hope for the best. Prepare. Hope is 
not a strategy.

Further reading:

Building production-ready data pipelines 
using Dataflow

Design your pipeline
Create your pipeline
Test your pipeline

SRE Data Processing Pipelines 

https://cloud.google.com/solutions/building-production-ready-data-pipelines-using-dataflow-overview
https://cloud.google.com/solutions/building-production-ready-data-pipelines-using-dataflow-overview
https://beam.apache.org/documentation/pipelines/design-your-pipeline/
https://beam.apache.org/documentation/pipelines/create-your-pipeline/
https://beam.apache.org/documentation/pipelines/test-your-pipeline/
https://sre.google/resources/book-update/data-processing-pipelines/


Thank you!


