
Austin, 2022

Streaming NLP infrastructure
on Dataflow
By Alex Chan and Angus Neilson

Austin, 2022

Introductions

2

Austin, 2022

Who are we
Your presenters

● Alex Chan
○ Senior ML Engineer, ML Platform, Trustpilot
○ Background in data science, ML,
○ Likes Whisky

● Angus Neilson
○ Senior Data Engineer, Data Platform , Trustpilot
○ Data Engineer with a background in building scalable Data pipelines in many sectors. Working

currently with Beam Kafka BigQuery Python Java
○ Likes Whisky

3

Austin, 2022

Agenda

1. Trustpilot Data Platform
2. Beam Programming Model
3. GPUs on Dataflow
4. Beam for MLOps

4

Our mission
is to become a
universal symbol
of trust You can add a text or bullets here.

5

Austin, 2022

Trustpilot what we do
What we do is bring consumers and companies together to
continuously share, collaborate, and improve through our
reviews platform.

● 46.7 M reviews were written on the Trustpilot platform
globally in 2021

● Thats 21% increase compared to previous year.
● We work hard to make sure you’re reading reviews

based on real experiences.
● 2.7m fake reviews were removed in 2021

6

Austin, 2022

Trustpilot Data Platform

7

Austin, 2022

Where we started
With and existing pipeline that had a few issues

● Slow to backfill
● English Language only (we were founded in Denmark 󰎴)
● Pre Transformer Era 🤖 (no not that one)

8

Austin, 2022

Where we wanted to go
● Faster Turnaround of our models
● Ability to extend quickly - enrichments for example
● Integrate in the Datalake to support our Data Science teams

9

Austin, 2022 10

Existing Infrastructure

Austin, 2022 11

Data Mesh

xkcd.com/2054

As a Data
platform Team
we provide the
environment
enable our
different
contexts to
easily manage
and add value to
our data

https://xkcd.com/2054

Austin, 2022

Data Mesh

12

“a type of data platform architecture that embraces the ubiquity of
data in the enterprise by leveraging a domain-oriented, self-serve
design”

– Zhamak Dehghani

Austin, 2022

Trustpilot ML Platform

13

Austin, 2022 14

Again Simplified

Austin, 2022

So never as simple as you think
Some issues we had

● KafkaIO - Python
● Reading the Kafka metadata
● Handling Kafka Tombstone messages (BEAM-10529)

So we altered our design

● Added a Kafka to Pub/Sub Beam job

15

https://issues.apache.org/jira/browse/BEAM-10529

Austin, 2022 16

So we ended up here

Austin, 2022

Beam’s unified programming
model

17

Austin, 2022

Advantages of using Beam
● The unified model gives flexibility for backfilling data
● Streaming
● Easy for us to use Batch for short term for the whole process.

18

Austin, 2022

Advantages of using Beam
● Portable, it runs locally using the same code
● Google Cloud Dataflow our chosen method
● Open Source, We like open source
● Custom metrics very simple to add

19

Austin, 2022 20

The current architecture

Live

Backfill

Datalake

Austin, 2022

GPUs on Dataflow

21

Operating
GPUs on
Dataflow - When to use

- Our setup
- Some pitfallsOverview

22

Austin, 2022 23

- Large transformer embedder model from 🤗

GPUs: Motivation

Austin, 2022 24

GPUs: Motivation

Austin, 2022 25

- Large transformer embedder model from 🤗

- Achieve low latency in streaming pipeline
- Enable quick model releases with batch pipelines

GPUs: Motivation

Austin, 2022 26

- Large transformer embedder model from 🤗

- Achieve low latency in streaming pipeline
- Enable quick model releases with batch pipelines
- Doing local inference vs remote service call

GPUs: Motivation

Austin, 2022

- Conflicts with Beam's parallelism:
- Worker 😌
- vCPU/Docker runtime 😬
- Thread 😱

27

GPUs: Common pitfalls

Austin, 2022 28

GPUs: Common pitfalls
from apache_beam.utils import shared

(p
| ...
| beam.ParDo(Embed(shared.Shared()))
| ...
)

- Use a shared API to set an object to be shared

Austin, 2022 29

GPUs: Common pitfalls
class Embed(beam.DoFn):

def load_model(self)

 def initialize_model():
 model = Transformer(self.model_path)
 return WeakRefModel(model)

 self.model = self.shared_handle.acquire(initialize_model)

- Use a shared API to set an object to be shared

Austin, 2022 30

GPUs: Common pitfalls
- Multiple Docker runtimes on a worker
- Use custom instance sizes to limit to 1x vCPU
- Set --no_use_multiple_sdk_containers experiment flag

Austin, 2022 31

GPUs: Common pitfalls
 model = Transformer(self.model_path)

 # model is "lazy-loaded" to CPU only at this point, model is
 # only placed on GPU when running the first inference

 _ = model.encode(
 [
 "IN PRINCIPIO ERAT VERBUM",
 "ET VERBUM CARO FACTUM EST",
 "ET HABITAVIT IN NOBIS",
]
 * 3
)

- Run a dummy inference to place onto GPU

Austin, 2022 32

GPUs: Common pitfalls
import threading
lock = threading.Lock()
...

class Embed(beam.DoFn):
def __init__(self, lock):

self.lock = lock

def process(self, elem):
...
with self.lock:

return self._weakRef.model.encode(
sentences=sentences,

).tolist()

- Use a thread lock
to limit access to
shared resource

Austin, 2022

Worker 😌
- safe

vCPU/Docker runtime 😌
- shared objects
- set --no_use_multiple_sdk_containers experiment flag

Thread 😌
- shared objects
- set --number_of_worker_harness_threads=1 pipeline option
- dummy model initialisation
- lock

33

GPUs: Common pitfalls

Austin, 2022

- Custom image
- debug on GCP with VM instance

- Model loading/inference
- beware of when parallelism can cause problems

- Run benchmarks
- find optimal batch size, memory, device

- Flex templates
- build custom image, CI/CD with Cloud Build

- Store model artifacts in GCS
- avoid hitting HuggingFace public repository limits

34

GPUs: Checklist

Austin, 2022

Beam for MLOps

35

Drift
detection
with Beam

- Drift detection
- Math(s)
- Accelerating with JAX
- ResultsOverview

36

Austin, 2022 37

Drift detection: Example

Austin, 2022 38

Drift detection: Example

Austin, 2022 39

Drift detection: Approach

Austin, 2022 40

Max. Mean Discrepancy: Introduction
- A two-sample test statistic
- Multivariate data
- Measure pairwise distance between two data points
- Kernel method — Pick an appropriate kernel function

- e.g. kernels for strings, image, audio, graph, tree data

- Evaluate generative models
- measure distribution of generated data to real data

Austin, 2022 41

MMD: Example

Austin, 2022 42

MMD: Challenges

① Scale of data

② Matrix operations slow, scale poorly

③ Hyperparameter/Kernel search

Austin, 2022 43

- Take advantage of Beam parallelism
- Implement parallel linear algebra
- Chunk matrix into submatrices

MMD: ① Scale of data

Austin, 2022 44

MMD: ① Scale of data

Austin, 2022 45

MMD: ① Scale of data

Austin, 2022 46

MMD: ① Scale of data

Austin, 2022 47

MMD: ② Matrix operations scale poorly

- 1M to 1M comparison would take 3.5h
- JAX

Austin, 2022 48

● Numerical computation library in Python
○ compile to an intermediate representation for XLA
○ Drop-in replacement for NumPy
○ accelerate vector operations on G/TPU

● Autodiff. for native Python functions
● Excellent package for scientific computing

○ working with arrays, matrices, linear algebra, gradients
● We are using it to help scale drift detection computations within Beam

JAX: Overview

Austin, 2022 49

import numpy as np

def euclidean_dist_np(X, Y):
squared_diffs = np.power(X[:,None] - Y, 2)
summed = np.sum(squared_diffs, axis=-1)
return np.sqrt(summed)

JAX: vs NumPy

Austin, 2022 50

from jax import numpy as jnp

def euclidean_dist_ (X,Y):
squared_diffs = jnp.power(X[:,None] - Y, 2)
summed = jnp.sum(squared_diffs, axis=-1)
return jnp.sqrt(summed)

euclidean_dist_jax = jit(euclidean_dist_)

JAX: vs NumPy

Austin, 2022 51

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)numpy:

JAX: vs NumPy

Austin, 2022 52

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

numpy:

JAX: vs NumPy

Austin, 2022 53

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)

numpy:

jax:

JAX: vs NumPy

Austin, 2022 54

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop

numpy:

jax:

JAX: vs NumPy

Austin, 2022 55

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop

i 7 0 0 x !numpy:

jax:

JAX: vs NumPy

Austin, 2022 56

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop

i 7 0 0 x ! numpy:

jax: 30 x (cpu)

JAX: vs NumPy

Austin, 2022 57

JAX: Benchmark

Austin, 2022 58

- Automatic vectorisation with vmap
- Device parallelism with pmap

- Easily dispatch operations to multiple accelerator devices
- Dataflow supports multiple GPUs per worker

JAX: vmap and pmap

Austin, 2022 59

● Define a pure function

JAX: in Beam
class RBFKernel(beam.DoFn):
 def __init__(self):
 self.rbf_jax = jit(self.rbf_)

 @staticmethod
 def rbf_(X, Y, gamma):
 def distance(X, Y):
 return
jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2),
axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

Austin, 2022 60

● Define a pure function
● JIT Compile in DoFn __init__

method

JAX: in Beam
class RBFKernel(beam.DoFn):
 def __init__(self):
 self.rbf_jax = jit(self.rbf_)

 @staticmethod
 def rbf_(X, Y, gamma):
 def distance(X, Y):
 return
jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2),
axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

Austin, 2022 61

● Define a pure function
● JIT Compile in DoFn __init__

method
● Dispatch to GPU for speedup

JAX: in Beam
class RBFKernel(beam.DoFn):
 def __init__(self):
 self.rbf_jax = jit(self.rbf_)

 @staticmethod
 def rbf_(X, Y, gamma):
 def distance(X, Y):
 return
jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2),
axis=-1))

 d = distance(X, Y)
 return jnp.exp(-gamma * d**2)

 def process(self, elem):
 ...
 yield key, self.rbf_jax(X, Y, gamma)

Austin, 2022 62

Drift detection: Beam pipeline

Austin, 2022 63

Drift detection: Beam pipeline
I/O

I/O

Matrix multiplication
Matrix multiplication
Kernel function
Kernel function
Kernel function

I/O

Austin, 2022 64

Drift detection: Results

Austin, 2022 65

Drift detection: Monitoring

Austin, 2022

● Hypothesis testing
● Alternative parallel matrix algorithms
● Online drift

66

Drift detection: Next steps

Austin, 2022

Conclusion
- Python + Kafka
- Batch + Streaming
- GPUs on Dataflow
- Statistical drift detection on Beam

67

We are recruiting !!

business.trustpilot.com/jobs

68

https://uk.business.trustpilot.com/jobs

Austin, 2022

Questions?

69

Maybe some contact info here?
| @AngusNeilson1

trustpilot.com/jobs

https://twitter.com/AngusNeilson1
https://business.trustpilot.com/jobs

Austin, 2022

Further reading
● Trustpilot Transparency Report 2022 trustpilot-transparency-report-uk-2022.pdf
● Data Mesh https://martinfowler.com/articles/data-mesh-principles.html (Zhamak

Dehghani)
● Domain Oriented https://martinfowler.com/bliki/BoundedContext.html (Martin Fowler)

70

https://cdn.trustpilot.net/trustsite-consumersite/trustpilot-transparency-report-uk-2022.pdf
https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/bliki/BoundedContext.html

