Streaming NLP infrastructure on Dataflow

By Alex Chan and Angus Neilson
Introductions
Who are we

Your presenters

- **Alex Chan**
 - Senior ML Engineer, ML Platform, Trustpilot
 - Background in data science, ML,
 - Likes Whisky

- **Angus Neilson**
 - Senior Data Engineer, Data Platform, Trustpilot
 - Data Engineer with a background in building scalable Data pipelines in many sectors. Working currently with Beam Kafka BigQuery Python Java
 - Likes Whisky
Agenda

1. Trustpilot Data Platform
2. Beam Programming Model
3. GPUs on Dataflow
4. Beam for MLOps
Our mission is to become a universal symbol of trust.
Trustpilot what we do

What we do is bring consumers and companies together to continuously share, collaborate, and improve through our reviews platform.

- **46.7 M reviews** were written on the Trustpilot platform globally in 2021
- Thats **21%** increase compared to previous year.
- We work hard to make sure you’re reading reviews based on real experiences.
- **2.7m fake reviews** were removed in 2021
Trustpilot Data Platform
Where we started

With an existing pipeline that had a few issues

- Slow to backfill
- English Language only (we were founded in Denmark 🇩🇰)
- Pre Transformer Era 🤖 (no not that one)
Where we wanted to go

- Faster Turnaround of our models
- Ability to extend quickly - enrichments for example
- Integrate in the Datalake to support our Data Science teams
Existing Infrastructure

Simplified Overview of Datalake Ingestion

Operational Stores -> Kafka Connectors -> Kafka Cluster -> Cloud Dataflow -> Datalake Ingestion

- BigQuery
- LogTable
- LogTable
- LogTable

Trustpilot

Datalake
Data Mesh

As a Data platform Team we provide the environment enable our different contexts to easily manage and add value to our data.

xkcd.com/2054
Data Mesh

“a type of data platform architecture that embraces the ubiquity of data in the enterprise by leveraging a domain-oriented, self-serve design”

– Zhamak Dehghani
Trustpilot ML Platform
Again Simplified

Simplified Overview of Datalake Ingestion
Now with added NLP process
So never as simple as you think

Some issues we had

- **KafkaIO** - Python
- Reading the **Kafka** metadata
- Handling **Kafka** Tombstone messages ([BEAM-10529](#))

So we altered our design

- Added a **Kafka** to **Pub/Sub Beam** job
So we ended up here
Beam’s unified programming model
Advantages of using Beam

- The unified model gives flexibility for backfilling data
- Streaming
- Easy for us to use Batch for short term for the whole process.
Advantages of using Beam

- Portable, it runs locally using the same code
- **Google Cloud Dataflow** our chosen method
- Open Source, We like open source
- Custom metrics very simple to add

```python
self.foo_count = Metrics.counter("foo", "foo_count")
self.foo_count.inc()
```
The current architecture
GPUs on Dataflow
Operating GPUs on Dataflow

Overview

- When to use
- Our setup
- Some pitfalls
GPU: Motivation

- Large transformer embedder model from 🐶

Text

Embedding model

0.000 0.006 -0.013 ...

Text as vector
GPUs: Motivation

A quarterback throws a football

Text

Embedding model

0.000 0.006 -0.013 -0.013

Text as vector

canine companions say

bovine buddies say

meow

woof

moo

feline friends say
- Large transformer embedder model from 🤗
- Achieve low latency in streaming pipeline
- Enable quick model releases with batch pipelines
GPUs: Motivation

- Large transformer embedder model from 🤗

- Achieve low latency in streaming pipeline
- Enable quick model releases with batch pipelines
- Doing local inference vs remote service call
GPUs: Common pitfalls

- Conflicts with Beam's parallelism:
 - Worker 😌
 - vCPU/Docker runtime 😞
 - Thread 😱
GPUs: Common pitfalls

```python
from apache_beam.utils import shared

(p
  | ...
  | beam.ParDo(Embed(shared.Shared()))
  | ...
)
```

- Use a shared API to set an object to be shared
GPUs: Common pitfalls

```python
class Embed(beam.DoFn):
    def load_model(self):
        def initialize_model():
            model = Transformer(self.model_path)
            return WeakRefModel(model)
        self.model = self.shared_handle.acquire(initialize_model)

- Use a shared API to set an object to be shared
```
GPUs: Common pitfalls

- Multiple Docker runtimes on a worker
- Use custom instance sizes to limit to 1x vCPU
- Set `--no_use_multiple_sdk_containers` experiment flag
GPUs: Common pitfalls

model = Transformer(self.model_path)

model is "lazy-loaded" to CPU only at this point, model is
only placed on GPU when running the first inference
_ = model.encode(
 [
 "IN PRINCIPIO ERAT VERBUM",
 "ET VERBUM CARO FACTUM EST",
 "ET HABITAVIT IN NOBIS",
] * 3
)

- Run a dummy inference to place onto GPU
GPUs: Common pitfalls

```python
import threading
lock = threading.Lock()
...

class Embed(beam.DoFn):
    def __init__(self, lock):
        self.lock = lock

def process(self, elem):
    ...
    with self.lock:
        return self._weakRef.model.encode(
            sentences=sentences,
        ).tolist()
```

- Use a thread lock to limit access to shared resource
GPUs: Common pitfalls

Worker 😞
- safe

vCPU/Docker runtime 😞
- shared objects
- set `--no_use_multiple_sdk_containers` experiment flag

Thread 😞
- shared objects
- set `--number_of_worker_harness_threads=1` pipeline option
- dummy model initialisation
- lock
GPUs: Checklist

- Custom image
 - debug on GCP with VM instance
- Model loading/inference
 - beware of when parallelism can cause problems
- Run benchmarks
 - find optimal batch size, memory, device
- Flex templates
 - build custom image, CI/CD with Cloud Build
- Store model artifacts in GCS
 - avoid hitting HuggingFace public repository limits
Beam for MLOps
Drift detection with Beam

Overview

- Drift detection
- Math(s)
- Accelerating with JAX
- Results
Drift detection: Example

Diverging multivariate distributions
Drift detection: Example

Diverging multivariate distributions
Drift detection: Approach
Max. Mean Discrepancy: Introduction

- A two-sample test statistic
- Multivariate data
- Measure pairwise distance between two data points
- Kernel method — Pick an appropriate kernel function
 - e.g. kernels for strings, image, audio, graph, tree data
- Evaluate generative models
 - measure distribution of generated data to real data
MMD: Example

Diverging multivariate distributions

MMD = 0.0056
MMD: Challenges

① Scale of data
② Matrix operations slow, scale poorly
③ Hyperparameter/Kernel search
MMD: ① Scale of data

- Take advantage of **Beam** parallelism
- Implement parallel linear algebra
- Chunk matrix into submatrices
MMD: ① Scale of data
MMD: ① Scale of data

- X embeddings
 - Succeeded
 - 28 min 52 sec
 - 5 of 5 stages succeeded

- Batch-Y
 - Succeeded
 - 25 sec
 - 3 of 3 stages succeeded

- Reference embeddings
 - Succeeded
 - 15 min 8 sec
 - 5 of 5 stages succeeded

- Batch-X
 - Succeeded
 - 13 sec
 - 3 of 3 stages succeeded
MMD: ① Scale of data

```python
class Outer(beam.DoFn):
    STATE_SPEC = beam.transforms.userstate.ReadModifyWriteStateSpec(
        name="count", coder=beam.coders.VarIntCoder()
    )

    def process(self, elem, state=beam.DoFn.StateParam(STATE_SPEC)):
        _, elem = elem
        count = state.read() or 0
        yield count, np.vstack(elem)

    state.write(count + 1)
```
MMD: ② Matrix operations scale poorly

```python
sklearn.metrics.pairwise.rbf_kernel
```

```python
sklearn.metrics.pairwise.rbf_kernel(X, Y=None, gamma=None)
```

Compute the rbf (gaussian) kernel between X and Y:

```
K(x, y) = \exp(-\gamma ||x-y||^2)
```

for each pair of rows x in X and y in Y.

- 1M to 1M comparison would take 3.5h
- JAX
JAX: Overview

● Numerical computation library in Python
 ○ compile to an intermediate representation for XLA
 ○ Drop-in replacement for NumPy
 ○ accelerate vector operations on G/TPU

● Autodiff. for native Python functions

● Excellent package for scientific computing
 ○ working with arrays, matrices, linear algebra, gradients

● We are using it to help scale drift detection computations within Beam
import numpy as np

def euclidean_dist_np(X, Y):
 squared_diffs = np.power(X[:,None] - Y, 2)
 summed = np.sum(squared_diffs, axis=-1)
 return np.sqrt(summed)
from jax import numpy as jnp

def euclidean_dist_ (X,Y):
 squared_diffs = jnp.power(X[:,None] - Y, 2)
 summed = jnp.sum(squared_diffs, axis=-1)
 return jnp.sqrt(summed)

euclidean_dist_jax = jit(euclidean_dist_)
JAX: vs NumPy

```python
X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit

numpy:  euclidean_dist_np(X,Y)
```
JAX: vs NumPy

\[
X = \text{np.random.normal}(0,1,\text{(int(1e4),5)}) \\
Y = \text{np.random.normal}(0,1,\text{(int(1e4),5)})
\]

```
%%timeit

numpy: euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop
```
JAX: vs NumPy

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
numpy: euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
jax: euclidean_dist_jax(X,Y)
JAX: vs NumPy

\[
X = \text{np.random.normal}(0,1,(\text{int}(1e4),5)) \\
Y = \text{np.random.normal}(0,1,(\text{int}(1e4),5))
\]

```
%%timeit

numpy: euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop
```

```
%%timeit

jax: euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop
```
JAX: vs NumPy

```python
X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))
```

```none
%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop
```

```none
%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop
```
JAX: vs **NumPy**

\[
X = \text{np.random.normal}(0,1,\text{(int}(1\text{e}4),5)) \\
Y = \text{np.random.normal}(0,1,\text{(int}(1\text{e}4),5))
\]

```
%%timeit
numpy: euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop
```

```
%%timeit
jax: euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop
```
JAX: Benchmark

Matrix operations benchmark

- **SKLEARN**
- **JAX_JIT_TESLA_T4**
- **JAX_NONJIT_TESLA_T4**

Time (seconds)

Matrix size (row x col) — log2 scale
JAX: vmap and pmap

- Automatic vectorisation with vmap
- Device parallelism with pmap
 - Easily dispatch operations to multiple accelerator devices
 - Dataflow supports multiple GPUs per worker
JAX: in Beam

- Define a pure function

```python
class RBFKernel(beam.DoFn):
    @staticmethod
    def rbf_(X, Y, gamma):
        def distance(X, Y):
            return jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2), axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)
```

Austin, 2022
JAX: in Beam

- Define a pure function
- **JIT** Compile in **DoFn** `__init__` method

```python
class RBFKernel(beam.DoFn):
    def __init__(self):
        self.rbf_jax = jit(self.rbf_)

    @staticmethod
    def rbf_(X, Y, gamma):
        def distance(X, Y):
            return jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2),
                                    axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)
```
JAX: in Beam

- Define a pure function
- **JIT** Compile in DoFn `__init__` method
- Dispatch to GPU for speedup

```python
class RBFKernel(beam.DoFn):
    def __init__(self):
        self.rbf_jax = jit(self.rbf_)

@staticmethod
def rbf_(X, Y, gamma):
    def distance(X, Y):
        return jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2), axis=-1))

    d = distance(X, Y)
    return jnp.exp(-gamma * d**2)

    def process(self, elem):
        ...
        yield key, self.rbf_jax(X, Y, gamma)
```
Drift detection: Beam pipeline

\[MMD^2(P, Q) = \|\mu_P - \mu_Q\|^2_F \]

\[= \langle \mu_P, \mu_P \rangle_F + \langle \mu_Q, \mu_Q \rangle_F - 2 \langle \mu_P, \mu_Q \rangle_F \]

\[= E_P k(X, X') + E_Q k(Y, Y') - 2 E_{P,Q} k(X, Y) \]
Drift detection: Beam pipeline

<table>
<thead>
<tr>
<th>Step name</th>
<th>Status</th>
<th>Wall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference embeddings</td>
<td>Succeeded</td>
<td>13 minutes</td>
</tr>
<tr>
<td>Batch-X</td>
<td>Succeeded</td>
<td>9 seconds</td>
</tr>
<tr>
<td>X embeddings</td>
<td>Succeeded</td>
<td>24 minutes</td>
</tr>
<tr>
<td>Batch-Y</td>
<td>Succeeded</td>
<td>17 seconds</td>
</tr>
<tr>
<td>PCA projection-Y</td>
<td>Succeeded</td>
<td>1 minute</td>
</tr>
<tr>
<td>PCA projection-X</td>
<td>Succeeded</td>
<td>40 seconds</td>
</tr>
<tr>
<td>RBF(X,Y)</td>
<td>Succeeded</td>
<td>1 minute</td>
</tr>
<tr>
<td>RBF(YY)</td>
<td>Succeeded</td>
<td>1 minute</td>
</tr>
<tr>
<td>RBF(XX)</td>
<td>Succeeded</td>
<td>55 seconds</td>
</tr>
<tr>
<td>CoGroupByKey</td>
<td>Succeeded</td>
<td>0 seconds</td>
</tr>
<tr>
<td>ParDo(MaximumMeanDiscrepancy)</td>
<td>Succeeded</td>
<td>0 seconds</td>
</tr>
<tr>
<td>WriteMetrics</td>
<td>Succeeded</td>
<td>1 second</td>
</tr>
</tbody>
</table>

Matrix multiplication
Kernel function
Matrix multiplication
Kernel function
I/O
I/O
I/O
I/O
Drift detection: Results
Drift detection: Monitoring

Data Watermark Lag

Elements Produced

Backlog (bytes)

Mean Maximum Distance (P(X) drift, weekly lag)
Drift detection: Next steps

- Hypothesis testing
- Alternative parallel matrix algorithms
- Online drift
Conclusion

- Python + Kafka
- Batch + Streaming
- GPUs on Dataflow
- Statistical drift detection on Beam
We are recruiting!!

business.trustpilot.com/jobs
Questions?

Maybe some contact info here?
| @AngusNeilson1
| trustpilot.com/jobs
Further reading

- Domain Oriented https://martinfowler.com/bliki/BoundedContext.html (Martin Fowler)