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Who are we 
Your presenters 

● Alex Chan
○ Senior ML Engineer, ML Platform, Trustpilot 
○ Background in data science, ML, 
○ Likes Whisky 

● Angus Neilson
○ Senior Data Engineer, Data Platform , Trustpilot
○ Data Engineer with a background in building scalable Data pipelines in many sectors. Working 

currently with Beam Kafka BigQuery Python Java
○ Likes Whisky
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Agenda 

1. Trustpilot Data Platform
2. Beam Programming Model
3. GPUs on Dataflow
4. Beam for MLOps
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Our mission 
is to become a 
universal symbol 
of trust You can add a text or bullets here.
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Trustpilot what we do
What we do is bring consumers and companies together to 
continuously share, collaborate, and improve through our 
reviews platform.

● 46.7 M  reviews were written on the Trustpilot platform 
globally in 2021

● Thats 21% increase compared to previous  year.
● We work hard to make sure you’re reading reviews 

based on real experiences. 
● 2.7m fake reviews were removed in 2021
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Trustpilot Data Platform
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Where we started
With and existing pipeline that had a few issues   

● Slow to backfill 
● English Language only (we were founded in Denmark 󰎴)
● Pre Transformer Era 🤖 (no not that one) 
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Where we wanted to go
● Faster Turnaround of our models 
● Ability to extend quickly - enrichments for example
● Integrate in the Datalake to support our Data Science teams 
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Existing Infrastructure 
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Data Mesh   

xkcd.com/2054 

As a Data 
platform Team 
we provide the 
environment 
enable our 
different  
contexts to 
easily manage 
and add value to 
our data 

https://xkcd.com/2054
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Data Mesh
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“a type of data platform architecture that embraces the ubiquity of 
data in the enterprise by leveraging a domain-oriented, self-serve 
design”

– Zhamak Dehghani 
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Trustpilot ML Platform
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Again Simplified 
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So never as simple as you think
Some issues we had 

● KafkaIO - Python 
● Reading the Kafka metadata 
● Handling Kafka Tombstone messages (BEAM-10529) 

So we altered our design 

● Added a Kafka to Pub/Sub Beam job 
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https://issues.apache.org/jira/browse/BEAM-10529
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So we ended up here
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Beam’s unified programming 
model 

17



Austin, 2022

Advantages of using Beam
● The unified model gives flexibility for backfilling data 
● Streaming  
● Easy for us to use Batch for short term for the whole process.
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Advantages of using Beam
● Portable, it runs locally using the same code 
● Google Cloud Dataflow our chosen method 
● Open Source, We like open source
● Custom metrics very simple to add 
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The current architecture

Live

Backfill

Datalake
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GPUs on Dataflow
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Operating 
GPUs on 
Dataflow - When to use

- Our setup
- Some pitfallsOverview
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- Large transformer embedder model from 🤗

GPUs: Motivation
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GPUs: Motivation
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- Large transformer embedder model from 🤗

- Achieve low latency in streaming pipeline 
- Enable quick model releases with batch pipelines

GPUs: Motivation
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- Large transformer embedder model from 🤗

- Achieve low latency in streaming pipeline 
- Enable quick model releases with batch pipelines
- Doing local inference vs remote service call

GPUs: Motivation



Austin, 2022

- Conflicts with Beam's parallelism:
- Worker 😌
- vCPU/Docker runtime 😬
- Thread 😱

27

GPUs: Common pitfalls
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GPUs: Common pitfalls
from apache_beam.utils import shared

(p
| ...
| beam.ParDo(Embed(shared.Shared()))
| ...
)

- Use a shared API to set an object to be shared
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GPUs: Common pitfalls
class Embed(beam.DoFn):

def load_model(self)

        def initialize_model():
            model = Transformer(self.model_path)
            return WeakRefModel(model)

        self.model = self.shared_handle.acquire(initialize_model)

- Use a shared API to set an object to be shared



Austin, 2022 30

GPUs: Common pitfalls
- Multiple Docker runtimes on a worker
- Use custom instance sizes to limit to 1x vCPU
- Set --no_use_multiple_sdk_containers experiment flag
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GPUs: Common pitfalls
            model = Transformer(self.model_path)

            # model is "lazy-loaded" to CPU only at this point, model is 
   # only placed on GPU when running the first inference

            _ = model.encode(
                [
                    "IN PRINCIPIO ERAT VERBUM",
                    "ET VERBUM CARO FACTUM EST",
                    "ET HABITAVIT IN NOBIS",
                ]
                * 3
            )

- Run a dummy inference to place onto GPU
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GPUs: Common pitfalls
import threading
lock = threading.Lock()
...

class Embed(beam.DoFn):
def __init__(self, lock):

self.lock = lock

def process(self, elem):
...
with self.lock:

return self._weakRef.model.encode(
sentences=sentences,

).tolist()

- Use a thread lock 
to limit access to 
shared resource
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Worker 😌
- safe

vCPU/Docker runtime 😌
- shared objects
- set --no_use_multiple_sdk_containers experiment flag

Thread 😌
- shared objects
- set --number_of_worker_harness_threads=1 pipeline option
- dummy model initialisation
- lock

33

GPUs: Common pitfalls
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- Custom image
- debug on GCP with VM instance

- Model loading/inference
- beware of when parallelism can cause problems

- Run benchmarks 
- find optimal batch size, memory, device

- Flex templates
- build custom image, CI/CD with Cloud Build 

- Store model artifacts in GCS
- avoid hitting HuggingFace public repository limits

34

GPUs: Checklist
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Beam for MLOps
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Drift 
detection 
with Beam

- Drift detection
- Math(s)
- Accelerating with JAX
- ResultsOverview
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Drift detection: Example
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Drift detection: Example
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Drift detection: Approach
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Max. Mean Discrepancy: Introduction
- A two-sample test statistic
- Multivariate data
- Measure pairwise distance between two data points
- Kernel method — Pick an appropriate kernel function

- e.g. kernels for strings, image, audio, graph, tree data

- Evaluate generative models
- measure distribution of generated data to real data
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MMD: Example
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MMD: Challenges

① Scale of data

② Matrix operations slow, scale poorly

③ Hyperparameter/Kernel search



Austin, 2022 43

- Take advantage of Beam parallelism
- Implement parallel linear algebra
- Chunk matrix into submatrices

MMD: ① Scale of data
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MMD: ① Scale of data
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MMD: ① Scale of data
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MMD: ① Scale of data
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MMD: ② Matrix operations scale poorly

- 1M to 1M comparison would take 3.5h 
- JAX
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● Numerical computation library in Python
○ compile to an intermediate representation for XLA
○ Drop-in replacement for NumPy
○ accelerate vector operations on G/TPU

● Autodiff. for native Python functions 
● Excellent package for scientific computing

○ working with arrays, matrices, linear algebra, gradients
● We are using it to help scale drift detection computations within Beam

JAX: Overview
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import numpy as np

def euclidean_dist_np(X, Y):
squared_diffs =  np.power(X[:,None] - Y, 2) 
summed  =  np.sum(squared_diffs, axis=-1)
return  np.sqrt(summed)

JAX: vs NumPy
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from jax import numpy as jnp

def euclidean_dist_ (X,Y):
squared_diffs = jnp.power(X[:,None] - Y, 2) 
summed  = jnp.sum(squared_diffs, axis=-1)
return jnp.sqrt(summed)

euclidean_dist_jax = jit(euclidean_dist_)

JAX: vs NumPy
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X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)numpy:

JAX: vs NumPy
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X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

numpy:

JAX: vs NumPy
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X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)

numpy:

jax:

JAX: vs NumPy
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X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop

numpy:

jax:

JAX: vs NumPy
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X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop

i 7 0 0 x !numpy:

jax:

JAX: vs NumPy



Austin, 2022 56

X = np.random.normal(0,1,(int(1e4),5))
Y = np.random.normal(0,1,(int(1e4),5))

%%timeit
euclidean_dist_np(X,Y)
10 loops, best of 5: 8.02 s per loop

%%timeit
euclidean_dist_jax(X,Y)
100 loops, best of 5: 4.71 ms per loop

i 7 0 0 x ! numpy:

jax: 30 x  (cpu)

JAX: vs NumPy
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JAX: Benchmark
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- Automatic vectorisation with vmap
- Device parallelism with pmap

- Easily dispatch operations to multiple accelerator devices
- Dataflow supports multiple GPUs per worker

JAX: vmap and pmap
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● Define a pure function

JAX: in Beam
class RBFKernel(beam.DoFn):
    def __init__(self):
        self.rbf_jax = jit(self.rbf_)

    @staticmethod
    def rbf_(X, Y, gamma):
        def distance(X, Y):
            return 
jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2), 
axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)
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● Define a pure function
● JIT Compile in DoFn __init__ 

method

JAX: in Beam
class RBFKernel(beam.DoFn):
    def __init__(self):
        self.rbf_jax = jit(self.rbf_)

    @staticmethod
    def rbf_(X, Y, gamma):
        def distance(X, Y):
            return 
jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2), 
axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)
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● Define a pure function
● JIT Compile in DoFn __init__ 

method
● Dispatch to GPU for speedup

JAX: in Beam
class RBFKernel(beam.DoFn):
    def __init__(self):
        self.rbf_jax = jit(self.rbf_)

    @staticmethod
    def rbf_(X, Y, gamma):
        def distance(X, Y):
            return 
jnp.sqrt(jnp.sum(jnp.power(X[:, None] - Y, 2), 
axis=-1))

        d = distance(X, Y)
        return jnp.exp(-gamma * d**2)

    def process(self, elem):
        ...
        yield key, self.rbf_jax(X, Y, gamma)
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Drift detection: Beam pipeline
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Drift detection: Beam pipeline
I/O

I/O

Matrix multiplication 
Matrix multiplication
Kernel function
Kernel function
Kernel function

I/O
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Drift detection: Results
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Drift detection: Monitoring
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● Hypothesis testing
● Alternative parallel matrix algorithms
● Online drift
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Drift detection: Next steps
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Conclusion
- Python + Kafka
- Batch + Streaming
- GPUs on Dataflow
- Statistical drift detection on Beam
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We are recruiting !! 

business.trustpilot.com/jobs
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https://uk.business.trustpilot.com/jobs
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Questions?

69

Maybe some contact info here?
| @AngusNeilson1 

trustpilot.com/jobs 

https://twitter.com/AngusNeilson1
https://business.trustpilot.com/jobs
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Further reading
● Trustpilot Transparency Report 2022 trustpilot-transparency-report-uk-2022.pdf 
● Data Mesh https://martinfowler.com/articles/data-mesh-principles.html (Zhamak 

Dehghani) 
● Domain Oriented https://martinfowler.com/bliki/BoundedContext.html (Martin Fowler) 
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https://cdn.trustpilot.net/trustsite-consumersite/trustpilot-transparency-report-uk-2022.pdf
https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/bliki/BoundedContext.html

