
Unified Streaming And
Batch Pipelines At

LinkedIn Using Beam
Shangjin Zhang
Yuhong Cheng

July, 2022

Photo by Kari Shea on Unsplash

https://unsplash.com/@karishea?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/railroad-track?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

1

2

3

4

Agenda

Background:
Standardization Pipelines & Backfilling

Problem:
Backfilling Issues

Solution:
Unified Pipelines

Outcome:
Performance Gains

Convert user input information into
a set of pre-defined IDs

Standardization

Widely used for search / model
training and etc

A heavy process with NLP and
deep learning modelsurn:li:company:1234

urn:li:industry:1

● Real-Time
○ 100+ parallel streaming pipelines
○ 200/sec throughput
○ Apache Beam & Apache Samza

Lookup
Tables

Company
Standardizer
(Real-Time)

Storage

Profile

Standardized
Company

Change Stream
(unbounded)

Update

24 * 7

Replay all

Company
Standardizer
(Backfilling)

Overwrite

Periodical

● Backfilling
○ Exactly same streaming

pipelines
○ Deployed temporarily
○ 830 million member profiles
○ 40,000/sec throughput

Original Architecture
Kappa

1

2

3

4

Agenda

Background:
Standardization Pipelines & Backfilling

Problem:
Backfilling Issues

Solution:
Unified Pipelines

Outcome:
Performance Gains

Hard to scale

● Model iterates weekly instead of
quarterly now

● Streaming cluster is not optimized for
spiky resource footprint

● Can only host 3 concurrent
backfillings

Heavy load leads to long backfilling time

● Hours to days turnaround time
● Complex model can’t finish within

reasonable time

Backfilling Issues

Lookup
Tables

Storage

Profile

Standardized
Company

Replay all

Company
Standardizer
(Backfilling)

Override

Periodical

Change Stream
(unbounded)

Impact on other systems

● Flood lookup tables
● Noisy neighbor to co-located

streaming pipelines

(More) Backfilling Issues

Lookup
Tables

Storage

Profile

Standardized
Company

Replay all

Company
Standardizer
(Backfilling)

Override

Operational overhead

● Need to monitor and stop the
backfilling manually

Periodical

Motivation

● Run backfilling as batch job (lambda
architecture)

Change Stream
(unbounded)

image: imgflip.com

1

2

3

4

Agenda

Background:
Standardization Pipelines & Backfilling

Problem:
Backfilling Issues

Solution:
Unified Pipelines

Outcome:
Performance Gains

Dropped Solution: Two Codebases

Real-Time/
streaming
Codebase

Backfilling/
batch
Codebase

deploy

Samza Cluster

deploy

Spark Cluster

image: by Yuhong Cheng

Spark Cluster

Unified Architecture

Samza Cluster

Computing Engine

Unified Pipeline

Single
Beam
Codebase

deploy
Streaming

Batch

Target: streaming

Target: batch

 PipelineOptions pipelineOpts =
 PipelineOptionsFactory.fromArgs(args).create();
 Pipeline pipeline = Pipeline.create(pipelineOpts);

Joins.tableJoin

Standardizer

Unified Pipeline Example

Storage

Profile

Side Table

ProfileData.read

Standardized
Result

Result.write

pipeline.apply(ProfileData.read())
 .apply(Joins.tableJoin(sideTable))
 .apply(Standardizer())
 .apply(Result.write());

Unified IO

pipeline.apply(ProfileData.read())
 .apply(Joins.tableJoin(sideTable))
 .apply(Standardizer())
 .apply(Result.write());

Unbounded source Bounded source

isBatch
N Y

Joins.tableJoin

Standardizer

N Y

isBatch
N Y

DB HDFS

Unified PTransform

A special PTransform that provides a unified
interface to users but allows different
implementations according to pipeline type

public static class Read extends UnifiedPTransform<PBegin,
PCollection<String>> {

 @Override
 protected PCollection<String> expandStreaming(PBegin
pBegin) {
 return pBegin.getPipeline()
 .apply(KafkaIO.<String>read()
 .withTopic(getStreamingInput()))
 .apply(...);
 }

 @Override
 protected PCollection<String> expandBatch(PBegin pBegin) {
 return pBegin.getPipeline()
 .apply(FileIO.match().filepattern(getBatchInput()))
 .apply(...);
 }
}

Unified Table Join
pipeline.apply(ProfileData.read())
 .apply(Joins.tableJoin(sideTable))
 .apply(Standardizer())
 .apply(Result.write());

Provide options to do join based on the table type
to avoid unnecessary data shuffling

Typically
- streaming => key lookup
- batch => coGroupByKey Standardizer

ProfileData.read

Result.write

key lookupcoGroupByKey

side table
supports

key lookup

N Y

Side Table

1

2

3

4

Agenda

Background:
Standardization Pipelines & Backfilling

Problem:
Backfilling Issues

Solution:
Unified Pipelines

Outcome:
Performance Gains

Benchmarks

(More) Benchmarks

Faster Resources
Used ~50% less

cpu time and memory

Cost to Serve
Reduced ~11X cost

Dev productivity
Saved 94%

processing time

Write code ONCE

run everywhere

Wins

image: Flaticon.com

More Use
Cases

Other
Runners

Python
Support

Future Works

image: Flaticon.com

Thank you

